forked from ricktu288/ray-optics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
aplanatic-points.json
299 lines (299 loc) · 6.04 KB
/
aplanatic-points.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
{
"version": 2,
"objs": [
{
"type": "curvedglass",
"p1": {
"type": 1,
"x": 640,
"y": -500,
"exist": true
},
"p2": {
"type": 1,
"x": 1000,
"y": -500,
"exist": true
},
"eqn1": "-0.5\\cdot\\sqrt{1-x^2}",
"eqn2": "0.5\\cdot\\sqrt{1-x^2}",
"p": 1.5
},
{
"type": "blackline",
"p1": {
"type": 1,
"x": 640,
"y": 240,
"exist": true
},
"p2": {
"type": 1,
"x": 1000,
"y": 240,
"exist": true
}
},
{
"type": "circlelens",
"p1": {
"type": 1,
"x": 820,
"y": 60,
"exist": true
},
"p2": {
"type": 1,
"x": 1000,
"y": 60,
"exist": true
},
"p": 1.5
},
{
"type": "led",
"p1": {
"type": 1,
"x": 700,
"y": 60,
"exist": true
},
"p2": {
"type": 1,
"x": 1300,
"y": 60,
"exist": true
},
"p": 152,
"symmetric": true
},
{
"type": "blackline",
"p1": {
"type": 1,
"x": 1000,
"y": -600,
"exist": true
},
"p2": {
"type": 1,
"x": 640,
"y": -600,
"exist": true
}
},
{
"type": "blackline",
"p1": {
"type": 1,
"x": 1000,
"y": -400,
"exist": true
},
"p2": {
"type": 1,
"x": 1000,
"y": -600,
"exist": true
}
},
{
"type": "blackline",
"p1": {
"type": 1,
"x": 640,
"y": -400,
"exist": true
},
"p2": {
"type": 1,
"x": 1000,
"y": -400,
"exist": true
}
},
{
"type": "blackline",
"p1": {
"type": 1,
"x": 1000,
"y": -120,
"exist": true
},
"p2": {
"type": 1,
"x": 1000,
"y": 240,
"exist": true
}
},
{
"type": "blackline",
"p1": {
"type": 1,
"x": 640,
"y": -120,
"exist": true
},
"p2": {
"type": 1,
"x": 1000,
"y": -120,
"exist": true
}
},
{
"type": "led",
"p1": {
"type": 1,
"x": 664.115427318801,
"y": -500,
"exist": true
},
"p2": {
"type": 1,
"x": 720,
"y": -500,
"exist": true
},
"p": 162,
"symmetric": true
},
{
"type": "text",
"x": -1120,
"y": -600,
"p": "Aplanatic points of an optical system are special points on its optical axis, such that \"rays proceeding from one of them will all converge to, or seen to diverge from the other point\"."
},
{
"type": "text",
"x": -1120,
"y": -440,
"p": "spherical lens, will diverge from another point on the optical axis outside the spherical lens (without spherical aberration)."
},
{
"type": "text",
"x": -1120,
"y": -540,
"p": "Ellipse: the two foci of the elliptical lens/mirror are aplanatic points, since light emitted from one focus will converge towards the other."
},
{
"type": "text",
"x": -1120,
"y": -480,
"p": "Sphere: a spherical lens has two aplanatic points - click on the \"Extended rays\" option to verify that light emitted from a point on the optical axis inside the"
},
{
"type": "text",
"x": -739,
"y": -160,
"p": "k_1 ∙ n1 ∙ sqrt( (x - x_1)^2 + y^2) + k_2 ∙ n2 ∙ sqrt( (x - x_2)^2 + y^2) = n1 ∙ |x_1| + n2 ∙ |x_2|"
},
{
"type": "text",
"x": 1020,
"y": -60,
"p": "Spherical lens"
},
{
"type": "text",
"x": 1009.3333333333333,
"y": -544,
"p": "Elliptical lens"
},
{
"type": "text",
"x": -1120,
"y": -380,
"p": "Hyperbola: the two foci of the \"Hyperbolic mirror\" example are also aplanatic points."
},
{
"type": "text",
"x": -1120,
"y": -240,
"p": "Given two points with horizontal coordinates x_1 and x_2, and given the refractive index outside and inside our optical"
},
{
"type": "text",
"x": -1119,
"y": -200,
"p": "element as n1 and n2 (respectively), for this two points to be aplanatic points - the boundary of our optical element"
},
{
"type": "text",
"x": -1119,
"y": -120,
"p": "such that k_i=1 or -1 if the ray connecting x_i and the boundary of our optical element is real or imaginary, respectively."
},
{
"type": "text",
"x": -1119,
"y": -80,
"p": "This is an equation of a Cartesian oval, of which the conic sections are special cases."
},
{
"type": "text",
"x": -1119,
"y": 100,
"p": "whereas in the ellipse we have k_1=k_2=1, 0 < x_1, x_2 ."
},
{
"type": "text",
"x": -1119,
"y": -160,
"p": "must fulfill the following equation:"
},
{
"type": "blackline",
"p1": {
"type": 1,
"x": 640,
"y": -400,
"exist": true
},
"p2": {
"type": 1,
"x": 640,
"y": -600,
"exist": true
}
},
{
"type": "blackline",
"p1": {
"type": 1,
"x": 640,
"y": 240,
"exist": true
},
"p2": {
"type": 1,
"x": 640,
"y": -120,
"exist": true
}
},
{
"type": "text",
"x": -1119,
"y": 20,
"p": "In both the sphere and the ellipse in this example, we have n1=1 and n2=1.5."
},
{
"type": "text",
"x": -1119,
"y": 60,
"p": "However in the sphere we have k_1=-1, k_2=1, x_1 < 0 < x_2,"
}
],
"mode": "light",
"rayDensity_light": 0.12106835203815525,
"rayDensity_images": 1,
"observer": null,
"origin": {
"x": 855,
"y": 655
},
"scale": 0.75,
"colorMode": false
}