Skip to content

Latest commit

 

History

History
 
 

AltCLIP-m18

AltCLIP-m18

名称 Name 任务 Task 语言 Language(s) 模型 Model Github
AltCLIP-m18 Text-Image Multilingual CLIP FlagAI

简介 Brief Introduction

继双语模型AltCLIP与9语模型AltCLIP-m9之后,我们训练了18语CLIP模型。命名为AltCLIP-m18。它支持英语、中文、日语、泰语、韩语、印地语、乌克兰语、阿拉伯语、土耳其语、越南语、波兰语、荷兰语、葡萄牙语、意大利语、西班牙语、德语、法语和俄语。

AltCLIP-m18模型可以为AltDiffusion-m18模型提供支持,关于AltDiffusion模型的具体信息可查看此教程

模型代码已经在 FlagAI 上开源,权重位于我们搭建的 modelhub 上。我们还提供了微调,推理,验证的脚本,欢迎试用。

Following the bilingual model AltCLIP and the nine-language model AltCLIP-m9, we trained the eighteen-language CLIP model, Named AltCLIP-m18. It supports English, Chinese, Japanese, Thai, Korean, Hindi, Ukrainian, Arabic, Turkish, Vietnamese, Polish, Dutch, Portuguese, Italian, Spanish, German, French, and Russian.

The AltCLIP-m18 model can provide support for the AltDiffusion-m18 model. Specific information on the AltDiffusion modle can be found in this tutorial.

The model code has been open sourced on FlagAI and the weights are located on modelhub. We also provide scripts for fine-tuning, inference, and validation, so feel free to try them out.

训练数据集 Training datasets

No Language Stage1(LAION400M)(MIT) Stage 2 & 3
1 En LAION-Aesthetics (MIT)
2 th CCAligned LAION-Aesthetics (MIT)
3 ko WikiMatrix (CC-BY-SA 4.0) LAION-Aesthetics (MIT)
4 hi CCAligned LAION-Aesthetics (MIT)
5 uk CCMatrix LAION-Aesthetics (MIT)
6 ar WikiMatrix (CC-BY-SA 4.0), OpenSubtitles LAION-Aesthetics (MIT)
7 tr WikiMatrix (CC-BY-SA 4.0), CCMatrix LAION-Aesthetics (MIT)
8 vi CCMatrix LAION-Aesthetics (MIT)
9 pl CCMatrix , WikiMatrix (CC-BY-SA 4.0) LAION-Aesthetics (MIT)
10 nl CCMatrix LAION-Aesthetics (MIT)
11 pt CCAligned LAION-Aesthetics (MIT)
12 it WikiMatrix (CC-BY-SA 4.0), Wikipedia LAION-Aesthetics (MIT)
13 ja MultiParaCrawl (Creative Commons CC0 license ) LAION-Aesthetics (MIT)
14 zh WikiMatrix (CC-BY-SA 4.0), TSL2019 LAION-Aesthetics (MIT), wudaoMM(CC-BY-SA 4.0)[1]
15 es WikiMatrix (CC-BY-SA 4.0) LAION-Aesthetics (MIT)
16 de WikiMatrix (CC-BY-SA 4.0), EUbookshop LAION-Aesthetics (MIT)
17 fr WikiMatrix (CC-BY-SA 4.0), EuroPat (Creative Commons CC0 license) LAION-Aesthetics (MIT)
18 ru WikiMatrix (CC-BY-SA 4.0), CCMatrix LAION-Aesthetics (MIT)

[1] WuDaoMM数据集仅用于学术研究,任何使用该数据集都应该遵循以下要求。WuDaoMM不拥有这些图片的版权。 图片的使用必须遵守Flickr使用条款。 图像的用户对使用数据集承担全部责任,不私自传播上面的图片。 如果图片的版权受到侵犯,请联系我们,我们将立即删除。

[1] WuDaoMMdataset is only used for academic research, any use of this dataset should follow the following requirements. WuDaoMM does not own the copyright of these pictures. Use of images is subject to the Flickr term of use. Users of the images take full responsibility for using the dataset and do not distribute the above images privately. If the copyright of the image is violated, please contact us and it will be removed immediately.

阶段1使用平行语料库数据。

阶段2和3主要使用Laion-Aesthetics的一个子集。中文数据集采用wudaoMM数据集(CC-BY-SA 4.0)。

Stage 1 uses parallel corpus data.

Stage2&3 mainly use a subset of Laion-Aesthetics. The wudaoMM data set (CC-BY-SA 4.0) is used as a Chinese data set.

引用 Citation

关于AltCLIP,我们已经推出了相关报告,有更多细节可以查阅,如对您的工作有帮助,欢迎引用。

If you find this work helpful, please consider to cite

@article{https://doi.org/10.48550/arxiv.2211.06679,
  doi = {10.48550/ARXIV.2211.06679},
  url = {https://arxiv.org/abs/2211.06679},
  author = {Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell},
  keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences},
  title = {AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities},
  publisher = {arXiv},
  year = {2022},
  copyright = {arXiv.org perpetual, non-exclusive license}
}

训练/Training

训练共有两个阶段。 在平行知识蒸馏阶段,我们只是使用平行语料文本来进行蒸馏(平行语料相对于图文对更容易获取且数量更大)。在双语对比学习阶段,我们使用少量的中-英图像-文本对(一共约2百万)来训练我们的文本编码器以更好地适应图像编码器。

There are two phases of training. In the parallel knowledge distillation phase, we only use parallel corpus texts for distillation (parallel corpus is easier to obtain and larger in number compared to image text pairs). In the mltilingual comparison learning phase, we use a small number of Chinese-English image-text pairs (about 2 million in total) to train our text encoder to better fit the image encoder.

下游效果/Performance

我们提出的模型与SOTA CLIP模型在双语跨模态基准(即Flickr30k的中英文版本)上的比较结果。这些模型中使用的图像编码器均为ViT-L,便于比较。

Comparison results between our proposed model and SOTA CLIP model on a bilingual cross-modal benchmark (i.e., the English and Chinese versions of Flickr30k.) The image encoders used in these models are ViT-L for easy comparison.

Language Method Text-to-Image Retrival Image-to-Text Retrival MR
R@1 R@5 R@10 R@1 R@5 R@10
Flickr30k-English CLIP 65.0 87.1 92.2 85.1 97.3 99.2 87.6
Taiyi 25.3 48.2 59.2 39.3 68.1 79.6 53.3
Wukong - - - - - - -
R2D2 - - - - - - -
CN-CLIP 49.5 76.9 83.8 66.5 91.2 96.0 77.3
AltCLIP 72.5 91.6 95.4 86.0 98.0 99.1 90.4
Flickr30k-Chinese CLIP 0.0 2.4 4.0 2.3 8.1 12.6 5.0
Taiyi 53.7 79.8 86.6 63.8 90.5 95.9 78.4
Wukong 51.7 78.9 86.3 76.1 94.8 97.5 80.9
R2D2 60.9 86.8 92.7 77.6 96.7 98.9 85.6
CN-CLIP 68.0 89.7 94.4 80.2 96.6 98.2 87.9
AltCLIP 69.8 89.9 94.7 84.8 97.4 98.8 89.2

多语言性能/Multi-lingual performance

We achieve the SOTA zero-shot results on XTD.

我们AltCLIP-m9在多语言的多模态检索数据集上的zero-shot性能。

可视化效果/Visualization effects

基于AltCLIP,我们还开发了AltDiffusion模型,可视化效果如下。

Based on AltCLIP, we have also developed the AltDiffusion model, visualized as follows.

模型推理 Inference

import torch
from PIL import Image
from flagai.auto_model.auto_loader import AutoLoader

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

loader = AutoLoader(
    task_name="txt_img_matching",
    model_name="AltCLIP-XLMR-L",   # Load the checkpoints from Modelhub(model.baai.ac.cn/models)
    model_name="AltCLIP-XLMR-L-m18",   # Load the checkpoints from Modelhub(model.baai.ac.cn/models)
    model_dir="./checkpoints"
)

model = loader.get_model()
tokenizer = loader.get_tokenizer()
transform = loader.get_transform()

model.eval()
model.to(device)
tokenizer = loader.get_tokenizer()

def inference():
    image = Image.open("./dog.jpeg")
    image = transform(image)
    image = torch.tensor(image["pixel_values"]).to(device)
    tokenizer_out = tokenizer(["a rat", "a dog", "a cat"], 
                                padding=True,
                                truncation=True,
                                max_length=77,
                                return_tensors='pt')

    text = tokenizer_out["input_ids"].to(device)
    attention_mask = tokenizer_out["attention_mask"].to(device)
    with torch.no_grad():
        image_features = model.get_image_features(image)
        text_features = model.get_text_features(text, attention_mask=attention_mask)
        text_probs = (image_features @ text_features.T).softmax(dim=-1)

    print(text_probs.cpu().numpy()[0].tolist())

if __name__=="__main__":
    inference()

CLIP微调/Finetuning

微调采用cifar10数据集,并使用FlagAI的Trainer快速开始训练过程。

Fine-tuning was done using the cifar10 dataset and using FlagAI's Trainer to quickly start the training process.

# Copyright © 2022 BAAI. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License")
import torch
from flagai.auto_model.auto_loader import AutoLoader
import os 
from flagai.trainer import Trainer
from torchvision.datasets import (
    CIFAR10
)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

dataset_root = "./clip_benchmark_datasets"
dataset_name = "cifar10"

batch_size = 4
classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']

auto_loader = AutoLoader(
    task_name="txt_img_matching",
    model_dir="./checkpoints",
    model_name="AltCLIP-XLMR-L-m18"   # Load the checkpoints from Modelhub(model.baai.ac.cn/models)
)

model = auto_loader.get_model()
model.to(device)
model.eval()
tokenizer = auto_loader.get_tokenizer()
transform = auto_loader.get_transform()

trainer = Trainer(env_type="pytorch",
                pytorch_device=device,
                experiment_name="clip_finetuning",
                batch_size=4,
                lr=1e-4,
                epochs=10,
                log_interval=10)

dataset = CIFAR10(root=os.path.join(dataset_root, dataset_name), 
                transform=transform,   
                download=True)

def cifar10_collate_fn(batch):
    # image shape is (batch, 3, 224, 224)
    images = torch.tensor([b[0]["pixel_values"][0] for b in batch])
    # text_id shape is (batch, n)
    input_ids = torch.tensor([tokenizer(f"a photo of a {b[1]}",
                                padding=True,
                                truncation=True,
                                max_length=77)["input_ids"] for b in batch])    

    attention_mask = torch.tensor([tokenizer(f"a photo of a {b[1]}",
                                padding=True,
                                truncation=True,
                                max_length=77)["attention_mask"] for b in batch])

    return {
        "pixel_values": images,
        "input_ids": input_ids,
        "attention_mask": attention_mask,
    }
    
if __name__ == "__main__":
    trainer.train(model=model, train_dataset=dataset, collate_fn=cifar10_collate_fn)

模型验证/Evaluation

我们提供了可以直接运行的验证脚本,在cifar10数据集上进行验证。

期待的输出为:{'dataset': 'cifar10', 'metrics': {'acc1': 0.95402, 'acc5': 0.99616, 'mean_per_class_recall': 0.9541200000000002}}

We provide validation scripts that can be run directly on the cifar10 dataset.

# Copyright © 2022 BAAI. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License")
import torch
from flagai.auto_model.auto_loader import AutoLoader
from metrics import zeroshot_classification
import json 
import os 
from torchvision.datasets import CIFAR10

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
maxlen = 256

dataset_root = "./clip_benchmark_datasets"
dataset_name = "cifar10"

auto_loader = AutoLoader(
    task_name="txt_img_matching",
    model_dir="./checkpoints/",
    model_name="AltCLIP-XLMR-L"
)

model = auto_loader.get_model()
model.to(device)
model.eval()
tokenizer = auto_loader.get_tokenizer()
transform = auto_loader.get_transform()

dataset = CIFAR10(root=os.path.join(dataset_root, dataset_name), 
                transform=transform,   
                download=True)
batch_size = 128
num_workers = 4

template = {"cifar10": [
        "a photo of a {c}.",
        "a blurry photo of a {c}.",
        "a black and white photo of a {c}.",
        "a low contrast photo of a {c}.",
        "a high contrast photo of a {c}.",
        "a bad photo of a {c}.",
        "a good photo of a {c}.",
        "a photo of a small {c}.",
        "a photo of a big {c}.",
        "a photo of the {c}.",
        "a blurry photo of the {c}.",
        "a black and white photo of the {c}.",
        "a low contrast photo of the {c}.",
        "a high contrast photo of the {c}.",
        "a bad photo of the {c}.",
        "a good photo of the {c}.",
        "a photo of the small {c}.",
        "a photo of the big {c}."
    ],
}
def evaluate():
    if dataset:
        dataloader = torch.utils.data.DataLoader(
            dataset,
            batch_size=batch_size,
            shuffle=False,
            num_workers=num_workers,
        )
        classnames = dataset.classes if hasattr(dataset, "classes") else None

        zeroshot_templates = template["cifar10"]
        metrics = zeroshot_classification.evaluate(
            model,
            dataloader,
            tokenizer,
            classnames, 
            zeroshot_templates,
            device=device,
            amp=True,
        )
       
        dump = {
            "dataset": dataset_name,
            "metrics": metrics
        }

        print(dump)
        with open("./result.txt", "w") as f:
            json.dump(dump, f)
        return metrics

if __name__ == "__main__":
    evaluate()

Huggingface Version

我们已经上传了模型权重到 transformers ,只需要几行代码就能快速使用我们的模型! Huggingface Model Card

we have uploaded our model to transformers. you can use our model by a few lines of code. If you find it useful, feel free to star🌟!

更多信息可查看 hf_altclip/

more details please refer directory hf_altclip/