Skip to content
/ fcdd Public
forked from liznerski/fcdd

Repository for the Explainable Deep One-Class Classification paper

License

Notifications You must be signed in to change notification settings

freekang/fcdd

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Explainable Deep One-Class Classification

Here we provide the implementation of Fully Convolutional Data Description (FCDD), an explainable approach to deep one-class classification. The implementation is based on PyTorch.

Citation

A preprint of our paper is available at: https://arxiv.org/abs/2007.01760

If you use our work, please also cite the current preprint:

@misc{liznerski2020explainable,
    title={Explainable Deep One-Class Classification},
    author={Philipp Liznerski and Lukas Ruff and Robert A. Vandermeulen and Billy Joe Franks and Marius Kloft and Klaus-Robert Müller},
    year={2020},
    eprint={2007.01760},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

Version

Please note that the current code is a preliminary version!
For instance, the parameters for running a training are suboptimally structured and poorly documented.
We will provide an updated version with thorough documentation and cleaned up code in the near future.
Stay tuned!

Installation

We recommended using a virtual environment to install FCDD. Assuming you're in the python directory, install FCDD via pip:

virtualenv -p python3 venv 
source venv/bin/activate
pip install .

Train FCDD

In general, any of the runners in python/fcdd/runners/bases.py can be used.
The BaseRunner performs just one training for one class and seed.
The SeedRunner repeats x training runs for x seeds.
The ClassRunner trains all classes with x seeds each.
But the easiest way is to use one of the prepared dataset runners in python/fcdd/runners, where each dataset runner sets some default parameters to train specific datasets.

A runner downloads the required datasets (but imagenet, which is no longer publicly available) automatically and stores them in ../../data/datasets. It logs all relevant results (errors, AUCs, heatmap pictures, snapshots, ...) in ../../data/results/experiment_folder_with_uid. The location of those both folders can be changed by altering the parameters datadir and logdir of the runner. For instance, run:

python runners/run_fmnist.py --datadir my_awesome_data_folder --logdir my_awesome_log_folder

The default parameters assume the code is run from the python/fcdd directory and store data in data. Thus, please make sure to either be in the python/fcdd directory or change the datadir and logdir parameters accordingly to avoid large data being stored in unexpected locations. In the following we assume you run code from the python/fcdd directory.

Reproduce Results

Fashion-MNIST

With EMNIST OE:

python runners/run_fmnist.py -e 400 --supervise-mode noise --supervise-params noise_mode=emnist online=1 --bias --preproc aeaug1

With CIFAR-100 OE:

python runners/run_fmnist.py -e 400 --supervise-mode noise --supervise-params noise_mode=cifar100 online=1 --bias --preproc aeaug1

CIFAR-10

For full OE:

python runners/run_cifar10.py -e 600 -b 20 --acc-batches 10 --lr-sched-param 0.1 400 500 --optimizer-type adam --scheduler-type milestones --supervise-mode noise --supervise-params noise_mode=cifar100 online=1 --bias --preproc aug1

For limited OE, change respective parameter in supervise-params, e.g. for using 8 OE samples:

python runners/run_cifar10.py -e 600 -b 20 --acc-batches 10 --lr-sched-param 0.1 400 500 --optimizer-type adam --scheduler-type milestones --supervise-mode noise --supervise-params noise_mode=cifar100 online=1 limit=8 --bias --preproc aug1

ImageNet

For full OE:

 python runners/run_imagenet.py -e 600 -b 20 --acc-batches 10 --lr-sched-param 0.1 400 500 --optimizer-type adam --scheduler-type milestones --supervise-mode noise --supervise-params noise_mode=imagenet22k online=1 --bias --preproc aug1

Please note that you have to manually download ImageNet1k and ImageNet22k and place them in the correct folders. Assuming your dataset folder is data/datasets. ImageNet1k needs to be in data/datasets/imagenet, containing the devkit, train, and val split in the form of a tar file each, with names ILSVRC2012_devkit_t12.tar.gz, ILSVRC2012_img_train.tar and ILSVRC2012_img_val.tar. These are the default names expected by the PyTorch loaders. ImageNet22k needs to be in data/datasets/imagenet22k/fall11_whole_extracted, containing all the extracted class directories with pictures, e.g. the folder n12267677 having pictures of acorns. You can download ImageNet1k on the official website after having registered: http://image-net.org/download. ImageNet22k, i.e. the full release fall 11, can also be found there.

MVTec-AD

Using confetti noise:

python runners/run_mvtec.py -e 200 -b 16 --acc-batches 8 --supervise-mode malformed_normal --supervise-params noise_mode=confetti online=1 --objective-params gaus_std=12 -wd 1e-5 --bias --preproc aeaug1

Using a semi-supervised setup with one true anomaly per defection:

python runners/run_mvtec.py -e 200 -b 16 --acc-batches 8 --supervise-mode noise --supervise-params noise_mode=mvtec_gt online=1 limit=1 -wd 1e-5 --bias --preproc aeaug1

Pascal VOC

python runners/run_pascalvoc.py -e 600 -b 20 --acc-batches 10 --lr-sched-param 0.1 400 500 --optimizer-type adam --scheduler-type milestones --supervise-mode noise --supervise-params noise_mode=imagenet_for_voc online=1 nominal_label=1 --bias --preproc aug1

About

Repository for the Explainable Deep One-Class Classification paper

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%