forked from hardmaru/slimevolleygym
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_state.py
108 lines (80 loc) · 2.62 KB
/
test_state.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
"""
State mode (Optional Human vs Built-in AI)
FPS (no-render): 100000 steps /7.956 seconds. 12.5K/s.
"""
import math
import numpy as np
import gym
import slimevolleygym
np.set_printoptions(threshold=20, precision=3, suppress=True, linewidth=200)
# game settings:
RENDER_MODE = True
if __name__=="__main__":
"""
Example of how to use Gym env, in single or multiplayer setting
Humans can override controls:
blue Agent:
W - Jump
A - Left
D - Right
Yellow Agent:
Up Arrow, Left Arrow, Right Arrow
"""
if RENDER_MODE:
from pyglet.window import key
from time import sleep
manualAction = [0, 0, 0] # forward, backward, jump
otherManualAction = [0, 0, 0]
manualMode = False
otherManualMode = False
# taken from https://github.com/openai/gym/blob/master/gym/envs/box2d/car_racing.py
def key_press(k, mod):
global manualMode, manualAction, otherManualMode, otherManualAction
if k == key.LEFT: manualAction[0] = 1
if k == key.RIGHT: manualAction[1] = 1
if k == key.UP: manualAction[2] = 1
if (k == key.LEFT or k == key.RIGHT or k == key.UP): manualMode = True
if k == key.D: otherManualAction[0] = 1
if k == key.A: otherManualAction[1] = 1
if k == key.W: otherManualAction[2] = 1
if (k == key.D or k == key.A or k == key.W): otherManualMode = True
def key_release(k, mod):
global manualMode, manualAction, otherManualMode, otherManualAction
if k == key.LEFT: manualAction[0] = 0
if k == key.RIGHT: manualAction[1] = 0
if k == key.UP: manualAction[2] = 0
if k == key.D: otherManualAction[0] = 0
if k == key.A: otherManualAction[1] = 0
if k == key.W: otherManualAction[2] = 0
policy = slimevolleygym.BaselinePolicy() # defaults to use RNN Baseline for player
env = gym.make("SlimeVolley-v0")
env.seed(np.random.randint(0, 10000))
#env.seed(689)
if RENDER_MODE:
env.render()
env.viewer.window.on_key_press = key_press
env.viewer.window.on_key_release = key_release
obs = env.reset()
steps = 0
total_reward = 0
action = np.array([0, 0, 0])
done = False
while not done:
if manualMode: # override with keyboard
action = manualAction
else:
action = policy.predict(obs)
if otherManualMode:
otherAction = otherManualAction
obs, reward, done, _ = env.step(action, otherAction)
else:
obs, reward, done, _ = env.step(action)
if reward > 0 or reward < 0:
manualMode = False
otherManualMode = False
total_reward += reward
if RENDER_MODE:
env.render()
sleep(0.02) # 0.01
env.close()
print("cumulative score", total_reward)