-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathcntl1_test.go
166 lines (155 loc) · 4.29 KB
/
cntl1_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
package ntm
import (
"math"
"math/rand"
"testing"
)
func TestController1(t *testing.T) {
times := 10
x := MakeTensor2(times, 4)
for i := 0; i < len(x); i++ {
for j := 0; j < len(x[i]); j++ {
x[i][j] = rand.Float64()
}
}
y := MakeTensor2(times, 4)
for i := 0; i < len(y); i++ {
for j := 0; j < len(y[i]); j++ {
y[i][j] = rand.Float64()
}
}
n := 3
m := 2
h1Size := 3
numHeads := 2
c := NewEmptyController1(len(x[0]), len(y[0]), h1Size, numHeads, n, m)
c.Weights(func(u *Unit) { u.Val = 2 * rand.Float64() })
forwardBackward(c, x, y)
l := loss(c, Controller1Forward, x, y)
checkGradients(t, c, Controller1Forward, x, y, l)
}
func Controller1Forward(c1 Controller, reads [][]float64, x []float64) ([]float64, []*Head) {
c := c1.(*Controller1)
h1Size := len(c.Wh1r)
h1 := make([]float64, h1Size)
for i := 0; i < len(h1); i++ {
var v float64 = 0
for j := 0; j < len(c.Wh1r[i]); j++ {
for k := 0; k < len(c.Wh1r[i][j]); k++ {
v += c.Wh1r[i][j][k].Val * reads[j][k]
}
}
for j := 0; j < len(c.Wh1x[i]); j++ {
v += c.Wh1x[i][j].Val * x[j]
}
v += c.Wh1b[i].Val
h1[i] = Sigmoid(v)
}
prediction := make([]float64, len(c.Wyh1))
for i := 0; i < len(prediction); i++ {
var v float64 = 0
maxJ := len(c.Wyh1[i]) - 1
for j := 0; j < maxJ; j++ {
v += c.Wyh1[i][j].Val * h1[j]
}
v += c.Wyh1[i][maxJ].Val
prediction[i] = Sigmoid(v)
}
numHeads := len(c.Wh1r[0])
m := len(c.Wh1r[0][0])
heads := make([]*Head, numHeads)
for i := 0; i < len(heads); i++ {
heads[i] = NewHead(m)
for j := 0; j < len(heads[i].units); j++ {
maxK := len(c.Wuh1[i][j]) - 1
for k := 0; k < maxK; k++ {
heads[i].units[j].Val += c.Wuh1[i][j][k].Val * h1[k]
}
heads[i].units[j].Val += c.Wuh1[i][j][maxK].Val
}
}
return prediction, heads
}
func loss(c Controller, forward func(Controller, [][]float64, []float64) ([]float64, []*Head), in, out [][]float64) float64 {
// Initialize memory as in the function forwardBackward
mem := c.Mtm1BiasV().Top
wtm1Bs := c.Wtm1BiasV()
wtm1s := make([]*Refocus, c.NumHeads())
for i := range wtm1s {
wtm1s[i] = &Refocus{Top: make([]Unit, c.MemoryN())}
var sum float64 = 0
for j := range wtm1Bs[i] {
wtm1s[i].Top[j].Val = math.Exp(wtm1Bs[i][j].Top.Val)
sum += wtm1s[i].Top[j].Val
}
for j := range wtm1Bs[i] {
wtm1s[i].Top[j].Val = wtm1s[i].Top[j].Val / sum
}
}
reads := MakeTensor2(c.NumHeads(), c.MemoryM())
for i := 0; i < len(reads); i++ {
for j := 0; j < len(reads[i]); j++ {
var v float64 = 0
for k := 0; k < len(mem); k++ {
v += wtm1s[i].Top[k].Val * mem[k][j].Val
}
reads[i][j] = v
}
}
prediction := make([][]float64, len(out))
var heads []*Head
for t := 0; t < len(in); t++ {
prediction[t], heads = forward(c, reads, in[t])
for i := 0; i < len(heads); i++ {
heads[i].Wtm1 = wtm1s[i]
}
wsFloat64, readsFloat64, memFloat64 := doAddressing(heads, mem)
wtm1s = transformWSFloat64(wsFloat64)
reads = readsFloat64
mem = transformMemFloat64(memFloat64)
}
var llh float64 = 0 // log likelihood
for t := 0; t < len(out); t++ {
for i := 0; i < len(out[t]); i++ {
p := prediction[t][i]
y := out[t][i]
llh += y*math.Log(p) + (1-y)*math.Log(1-p)
}
}
return -llh
}
func checkGradients(t *testing.T, c Controller, forward func(Controller, [][]float64, []float64) ([]float64, []*Head), in, out [][]float64, lx float64) {
c.WeightsVerbose(func(tag string, w *Unit) {
x := w.Val
h := machineEpsilonSqrt * math.Max(math.Abs(x), 1)
xph := x + h
w.Val = xph
lxph := loss(c, forward, in, out)
w.Val = x
grad := (lxph - lx) / (xph - x)
if math.IsNaN(grad) || math.Abs(grad-w.Grad) > 1e-5 {
t.Errorf("wrong %s gradient expected %f, got %f", tag, grad, w.Grad)
} else {
t.Logf("OK %s gradient expected %f, got %f", tag, grad, w.Grad)
}
})
}
func transformMemFloat64(memFloat64 [][]float64) [][]Unit {
mem := makeTensorUnit2(len(memFloat64), len(memFloat64[0]))
for i := 0; i < len(mem); i++ {
for j := 0; j < len(mem[0]); j++ {
mem[i][j].Val = memFloat64[i][j]
}
}
return mem
}
func transformWSFloat64(wsFloat64 [][]float64) []*Refocus {
wtm1s := make([]*Refocus, len(wsFloat64))
for i := 0; i < len(wtm1s); i++ {
wtm1s[i] = &Refocus{Top: make([]Unit, len(wsFloat64[i]))}
for j := 0; j < len(wtm1s[i].Top); j++ {
wtm1s[i].Top[j].Val = wsFloat64[i][j]
}
}
return wtm1s
}