-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathcntl1_test.go
198 lines (182 loc) · 5.1 KB
/
cntl1_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
package ntm
import (
"math"
"math/rand"
"testing"
)
func TestLogisticModel(t *testing.T) {
times := 10
x := MakeTensor2(times, 4)
for i := 0; i < len(x); i++ {
for j := 0; j < len(x[i]); j++ {
x[i][j] = rand.Float64()
}
}
y := MakeTensor2(times, 4)
for i := 0; i < len(y); i++ {
for j := 0; j < len(y[i]); j++ {
y[i][j] = rand.Float64()
}
}
n := 3
m := 2
h1Size := 3
numHeads := 2
c := NewEmptyController1(len(x[0]), len(y[0]), h1Size, numHeads, n, m)
c.Weights(func(u *Unit) { u.Val = 2 * rand.Float64() })
model := &LogisticModel{Y: y}
ForwardBackward(c, x, model)
checkGradients(t, c, Controller1Forward, x, model)
}
func TestMultinomialModel(t *testing.T) {
times := 10
x := MakeTensor2(times, 4)
for i := 0; i < len(x); i++ {
for j := 0; j < len(x[i]); j++ {
x[i][j] = rand.Float64()
}
}
outputSize := 4
y := make([]int, times)
for i := range y {
y[i] = rand.Intn(outputSize)
}
n := 3
m := 2
h1Size := 3
numHeads := 2
c := NewEmptyController1(len(x[0]), outputSize, h1Size, numHeads, n, m)
c.Weights(func(u *Unit) { u.Val = 2 * rand.Float64() })
model := &MultinomialModel{Y: y}
ForwardBackward(c, x, model)
checkGradients(t, c, Controller1Forward, x, model)
}
// A ControllerForward is a ground truth implementation of the forward pass of a controller.
type ControllerForward func(c Controller, reads [][]float64, x []float64) (prediction []float64, heads []*Head)
func Controller1Forward(c1 Controller, reads [][]float64, x []float64) ([]float64, []*Head) {
c := c1.(*controller1)
h1Size := len(c.Wh1r)
h1 := make([]float64, h1Size)
for i := 0; i < len(h1); i++ {
var v float64 = 0
for j := 0; j < len(c.Wh1r[i]); j++ {
for k := 0; k < len(c.Wh1r[i][j]); k++ {
v += c.Wh1r[i][j][k].Val * reads[j][k]
}
}
for j := 0; j < len(c.Wh1x[i]); j++ {
v += c.Wh1x[i][j].Val * x[j]
}
v += c.Wh1b[i].Val
h1[i] = Sigmoid(v)
}
prediction := make([]float64, len(c.Wyh1))
for i := 0; i < len(prediction); i++ {
var v float64 = 0
maxJ := len(c.Wyh1[i]) - 1
for j := 0; j < maxJ; j++ {
v += c.Wyh1[i][j].Val * h1[j]
}
v += c.Wyh1[i][maxJ].Val
prediction[i] = v
}
numHeads := len(c.Wh1r[0])
m := len(c.Wh1r[0][0])
heads := make([]*Head, numHeads)
for i := 0; i < len(heads); i++ {
heads[i] = NewHead(m)
for j := 0; j < len(heads[i].units); j++ {
maxK := len(c.Wuh1[i][j]) - 1
for k := 0; k < maxK; k++ {
heads[i].units[j].Val += c.Wuh1[i][j][k].Val * h1[k]
}
heads[i].units[j].Val += c.Wuh1[i][j][maxK].Val
}
}
return prediction, heads
}
func loss(c Controller, forward ControllerForward, in [][]float64, model DensityModel) float64 {
// Initialize memory as in the function ForwardBackward
mem := c.Mtm1BiasV().Top
wtm1Bs := c.Wtm1BiasV()
wtm1s := make([]*refocus, c.NumHeads())
for i := range wtm1s {
wtm1s[i] = &refocus{Top: make([]Unit, c.MemoryN())}
var sum float64 = 0
for j := range wtm1Bs[i] {
wtm1s[i].Top[j].Val = math.Exp(wtm1Bs[i][j].Top.Val)
sum += wtm1s[i].Top[j].Val
}
for j := range wtm1Bs[i] {
wtm1s[i].Top[j].Val = wtm1s[i].Top[j].Val / sum
}
}
reads := MakeTensor2(c.NumHeads(), c.MemoryM())
for i := 0; i < len(reads); i++ {
for j := 0; j < len(reads[i]); j++ {
var v float64 = 0
for k := 0; k < len(mem); k++ {
v += wtm1s[i].Top[k].Val * mem[k][j].Val
}
reads[i][j] = v
}
}
prediction := make([][]float64, len(in))
var heads []*Head
for t := 0; t < len(in); t++ {
prediction[t], heads = forward(c, reads, in[t])
prediction[t] = computeDensity(t, prediction[t], model)
for i := 0; i < len(heads); i++ {
heads[i].Wtm1 = wtm1s[i]
}
wsFloat64, readsFloat64, memFloat64 := doAddressing(heads, mem)
wtm1s = transformWSFloat64(wsFloat64)
reads = readsFloat64
mem = transformMemFloat64(memFloat64)
}
return model.Loss(prediction)
}
func computeDensity(timestep int, pred []float64, model DensityModel) []float64 {
units := make([]Unit, len(pred))
for j := range units {
units[j].Val = pred[j]
}
model.Model(timestep, units)
return UnitVals(units)
}
func checkGradients(t *testing.T, c Controller, forward ControllerForward, in [][]float64, model DensityModel) {
lx := loss(c, forward, in, model)
c.WeightsVerbose(func(tag string, w *Unit) {
x := w.Val
h := machineEpsilonSqrt * math.Max(math.Abs(x), 1)
xph := x + h
w.Val = xph
lxph := loss(c, forward, in, model)
w.Val = x
grad := (lxph - lx) / (xph - x)
if math.IsNaN(grad) || math.Abs(grad-w.Grad) > 1e-5 {
t.Errorf("wrong %s gradient expected %f, got %f", tag, grad, w.Grad)
} else {
t.Logf("OK %s gradient expected %f, got %f", tag, grad, w.Grad)
}
})
}
func transformMemFloat64(memFloat64 [][]float64) [][]Unit {
mem := makeTensorUnit2(len(memFloat64), len(memFloat64[0]))
for i := 0; i < len(mem); i++ {
for j := 0; j < len(mem[0]); j++ {
mem[i][j].Val = memFloat64[i][j]
}
}
return mem
}
func transformWSFloat64(wsFloat64 [][]float64) []*refocus {
wtm1s := make([]*refocus, len(wsFloat64))
for i := 0; i < len(wtm1s); i++ {
wtm1s[i] = &refocus{Top: make([]Unit, len(wsFloat64[i]))}
for j := 0; j < len(wtm1s[i].Top); j++ {
wtm1s[i].Top[j].Val = wsFloat64[i][j]
}
}
return wtm1s
}