Pytorch implementation of cnn network
Classical network
-
AlexNet
-
VGG
-
ResNet
-
ResNext
-
InceptionV1
-
InceptionV2 and InceptionV3
-
InceptionV4 and Inception-ResNet
-
GoogleNet
-
EfficienNet
-
MNasNet
-
DPN
Attention network
- SE Attention
- External Attention
- Self Attention
- SK Attention
- CBAM Attention
- BAM Attention
- ECA Attention
- DANet Attention
- Pyramid Split Attention(PSA)
- EMSA Attention
- A2Attention
- Non-Local Attention
- CoAtNet
- CoordAttention
- HaloAttention
- MobileViTAttention
- MUSEAttention
- OutlookAttention
- ParNetAttention
- ParallelPolarizedSelfAttention
- residual_attention
- S2Attention
- SpatialGroupEnhance Attention
- ShuffleAttention
- GFNet Attention
- TripletAttention
- UFOAttention
- VIPAttention
Lightweight network
- MobileNets:
- MobileNetV2:
- MobileNetV3:
- ShuffleNet:
- ShuffleNet V2:
- SqueezeNet
- Xception
- MixNet
- GhostNet
GAN
- Auxiliary Classifier GAN
- Adversarial Autoencoder
- BEGAN
- BicycleGAN
- Boundary-Seeking GAN
- Cluster GAN
- Conditional GAN
- Context-Conditional GAN
- Context Encoder
- Coupled GAN
- CycleGAN
- Deep Convolutional GAN
- DiscoGAN
- DRAGAN
- DualGAN
- Energy-Based GAN
- Enhanced Super-Resolution GAN
- Least Squares GAN
- Enhanced Super-Resolution GAN
- GAN
- InfoGAN
- Pix2Pix
- Relativistic GAN
- Semi-Supervised GAN
- StarGAN
- Wasserstein GAN
- Wasserstein GAN GP
- Wasserstein GAN DIV
ObjectDetection-network
- SSD:
- YOLO:
- YOLOv2:
- YOLOv3:
- FCOS:
- FPN:
- RetinaNet
- Objects as Points:
- FSAF:
- CenterNet
- FoveaBox
Semantic Segmentation
-
FCN
-
Fast-SCNN
-
LEDNet:
-
LRNNet
-
FisheyeMODNet:
Instance Segmentation
- PolarMask
FaceDetectorAndRecognition
- FaceBoxes
- LFFD
- VarGFaceNet
HumanPoseEstimation
- Stacked Hourglass Networks
- Simple Baselines
- LPN
At present, the work organized by this project is indeed not comprehensive enough. As the amount of reading increases, we will continue to improve this project. Welcome everyone star to support. If there are incorrect statements or incorrect code implementations in the article, you are welcome to point out~