-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy pathdataset.py
123 lines (103 loc) · 4.14 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# -*- coding = utf-8 -*-
"""
The :mod:`dataset` module defines the :class:`Dataset` class
and other subclasses which are used for managing datasets.
Created on 2018-04-15
@author: fuxuemingzhu
"""
import collections
import os
import itertools
import random
from collections import namedtuple
BuiltinDataset = namedtuple('BuiltinDataset', ['url', 'path', 'sep', 'reader_params'])
BUILTIN_DATASETS = {
'ml-100k':
BuiltinDataset(
url='http://files.grouplens.org/datasets/movielens/ml-100k.zip',
path='data/ml-100k/u.data',
sep='\t',
reader_params=dict(line_format='user item rating timestamp',
rating_scale=(1, 5),
sep='\t')
),
'ml-1m' :
BuiltinDataset(
url='http://files.grouplens.org/datasets/movielens/ml-1m.zip',
path='data/ml-1m/ratings.dat',
sep='::',
reader_params=dict(line_format='user item rating timestamp',
rating_scale=(1, 5),
sep='::')
),
}
# modify the random seed will change dataset spilt.
# if you want to use the model saved before, please don't modify this seed.
random.seed(0)
class DataSet:
"""Base class for loading datasets.
Note that you should never instantiate the :class:`Dataset` class directly
(same goes for its derived classes), but instead use one of the below
available methods for loading datasets."""
def __init__(self):
pass
@classmethod
def load_dataset(cls, name='ml-100k'):
"""Load a built-in dataset.
:param name:string: The name of the built-in dataset to load.
Accepted values are 'ml-100k', 'ml-1m', and 'jester'.
Default is 'ml-100k'.
:return: ratings for each line.
"""
try:
dataset = BUILTIN_DATASETS[name]
except KeyError:
raise ValueError('unknown dataset ' + name +
'. Accepted values are ' +
', '.join(BUILTIN_DATASETS.keys()) + '.')
if not os.path.isfile(dataset.path):
raise OSError(
"Dataset data/" + name + " could not be found in this project.\n"
"Please download it from " + dataset.url +
' manually and unzip it to data/ directory.')
with open(dataset.path) as f:
ratings = [cls.parse_line(line, dataset.sep) for line in itertools.islice(f, 0, None)]
print("Load " + name + " dataset success.")
return ratings
@classmethod
def parse_line(cls, line: str, sep: str):
"""
Parse a line.
Ratings as ensured to positive integers.
the separator in rating.data is `::`.
:param sep: the separator between fields. Example : ``';'``.
:param line: The line to parse
:return: tuple: User id, item id, rating score.
The timestamp will be ignored cause it wasn't used in Collaborative filtering.
"""
user, movie, rate = line.strip('\r\n').split(sep)[:3]
return user, movie, rate
@classmethod
def train_test_split(cls, ratings, test_size=0.2):
"""
Split rating data to training set and test set.
The default `test_size` is the test percentage of test size.
The rating file should be a instance of DataSet.
:param ratings: raw dataset
:param test_size: the percentage of test size.
:return: train_set and test_set
"""
train, test = collections.defaultdict(dict), collections.defaultdict(dict)
trainset_len = 0
testset_len = 0
for user, movie, rate in ratings:
if random.random() <= test_size:
test[user][movie] = int(rate)
testset_len += 1
else:
train[user][movie] = int(rate)
trainset_len += 1
print('split rating data to training set and test set success.')
print('train set size = %s' % trainset_len)
print('test set size = %s\n' % testset_len)
return train, test