forked from bitcoin/bitcoin
-
Notifications
You must be signed in to change notification settings - Fork 0
/
arith_uint256.h
296 lines (252 loc) · 8.82 KB
/
arith_uint256.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2017 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_ARITH_UINT256_H
#define BITCOIN_ARITH_UINT256_H
#include <assert.h>
#include <cstring>
#include <stdexcept>
#include <stdint.h>
#include <string>
#include <vector>
class uint256;
class uint_error : public std::runtime_error {
public:
explicit uint_error(const std::string& str) : std::runtime_error(str) {}
};
/** Template base class for unsigned big integers. */
template<unsigned int BITS>
class base_uint
{
protected:
static constexpr int WIDTH = BITS / 32;
uint32_t pn[WIDTH];
public:
base_uint()
{
static_assert(BITS/32 > 0 && BITS%32 == 0, "Template parameter BITS must be a positive multiple of 32.");
for (int i = 0; i < WIDTH; i++)
pn[i] = 0;
}
base_uint(const base_uint& b)
{
static_assert(BITS/32 > 0 && BITS%32 == 0, "Template parameter BITS must be a positive multiple of 32.");
for (int i = 0; i < WIDTH; i++)
pn[i] = b.pn[i];
}
base_uint& operator=(const base_uint& b)
{
for (int i = 0; i < WIDTH; i++)
pn[i] = b.pn[i];
return *this;
}
base_uint(uint64_t b)
{
static_assert(BITS/32 > 0 && BITS%32 == 0, "Template parameter BITS must be a positive multiple of 32.");
pn[0] = (unsigned int)b;
pn[1] = (unsigned int)(b >> 32);
for (int i = 2; i < WIDTH; i++)
pn[i] = 0;
}
explicit base_uint(const std::string& str);
bool operator!() const
{
for (int i = 0; i < WIDTH; i++)
if (pn[i] != 0)
return false;
return true;
}
const base_uint operator~() const
{
base_uint ret;
for (int i = 0; i < WIDTH; i++)
ret.pn[i] = ~pn[i];
return ret;
}
const base_uint operator-() const
{
base_uint ret;
for (int i = 0; i < WIDTH; i++)
ret.pn[i] = ~pn[i];
ret++;
return ret;
}
double getdouble() const;
base_uint& operator=(uint64_t b)
{
pn[0] = (unsigned int)b;
pn[1] = (unsigned int)(b >> 32);
for (int i = 2; i < WIDTH; i++)
pn[i] = 0;
return *this;
}
base_uint& operator^=(const base_uint& b)
{
for (int i = 0; i < WIDTH; i++)
pn[i] ^= b.pn[i];
return *this;
}
base_uint& operator&=(const base_uint& b)
{
for (int i = 0; i < WIDTH; i++)
pn[i] &= b.pn[i];
return *this;
}
base_uint& operator|=(const base_uint& b)
{
for (int i = 0; i < WIDTH; i++)
pn[i] |= b.pn[i];
return *this;
}
base_uint& operator^=(uint64_t b)
{
pn[0] ^= (unsigned int)b;
pn[1] ^= (unsigned int)(b >> 32);
return *this;
}
base_uint& operator|=(uint64_t b)
{
pn[0] |= (unsigned int)b;
pn[1] |= (unsigned int)(b >> 32);
return *this;
}
base_uint& operator<<=(unsigned int shift);
base_uint& operator>>=(unsigned int shift);
base_uint& operator+=(const base_uint& b)
{
uint64_t carry = 0;
for (int i = 0; i < WIDTH; i++)
{
uint64_t n = carry + pn[i] + b.pn[i];
pn[i] = n & 0xffffffff;
carry = n >> 32;
}
return *this;
}
base_uint& operator-=(const base_uint& b)
{
*this += -b;
return *this;
}
base_uint& operator+=(uint64_t b64)
{
base_uint b;
b = b64;
*this += b;
return *this;
}
base_uint& operator-=(uint64_t b64)
{
base_uint b;
b = b64;
*this += -b;
return *this;
}
base_uint& operator*=(uint32_t b32);
base_uint& operator*=(const base_uint& b);
base_uint& operator/=(const base_uint& b);
base_uint& operator++()
{
// prefix operator
int i = 0;
while (i < WIDTH && ++pn[i] == 0)
i++;
return *this;
}
const base_uint operator++(int)
{
// postfix operator
const base_uint ret = *this;
++(*this);
return ret;
}
base_uint& operator--()
{
// prefix operator
int i = 0;
while (i < WIDTH && --pn[i] == (uint32_t)-1)
i++;
return *this;
}
const base_uint operator--(int)
{
// postfix operator
const base_uint ret = *this;
--(*this);
return ret;
}
int CompareTo(const base_uint& b) const;
bool EqualTo(uint64_t b) const;
friend inline const base_uint operator+(const base_uint& a, const base_uint& b) { return base_uint(a) += b; }
friend inline const base_uint operator-(const base_uint& a, const base_uint& b) { return base_uint(a) -= b; }
friend inline const base_uint operator*(const base_uint& a, const base_uint& b) { return base_uint(a) *= b; }
friend inline const base_uint operator/(const base_uint& a, const base_uint& b) { return base_uint(a) /= b; }
friend inline const base_uint operator|(const base_uint& a, const base_uint& b) { return base_uint(a) |= b; }
friend inline const base_uint operator&(const base_uint& a, const base_uint& b) { return base_uint(a) &= b; }
friend inline const base_uint operator^(const base_uint& a, const base_uint& b) { return base_uint(a) ^= b; }
friend inline const base_uint operator>>(const base_uint& a, int shift) { return base_uint(a) >>= shift; }
friend inline const base_uint operator<<(const base_uint& a, int shift) { return base_uint(a) <<= shift; }
friend inline const base_uint operator*(const base_uint& a, uint32_t b) { return base_uint(a) *= b; }
friend inline bool operator==(const base_uint& a, const base_uint& b) { return memcmp(a.pn, b.pn, sizeof(a.pn)) == 0; }
friend inline bool operator!=(const base_uint& a, const base_uint& b) { return memcmp(a.pn, b.pn, sizeof(a.pn)) != 0; }
friend inline bool operator>(const base_uint& a, const base_uint& b) { return a.CompareTo(b) > 0; }
friend inline bool operator<(const base_uint& a, const base_uint& b) { return a.CompareTo(b) < 0; }
friend inline bool operator>=(const base_uint& a, const base_uint& b) { return a.CompareTo(b) >= 0; }
friend inline bool operator<=(const base_uint& a, const base_uint& b) { return a.CompareTo(b) <= 0; }
friend inline bool operator==(const base_uint& a, uint64_t b) { return a.EqualTo(b); }
friend inline bool operator!=(const base_uint& a, uint64_t b) { return !a.EqualTo(b); }
std::string GetHex() const;
void SetHex(const char* psz);
void SetHex(const std::string& str);
std::string ToString() const;
unsigned int size() const
{
return sizeof(pn);
}
/**
* Returns the position of the highest bit set plus one, or zero if the
* value is zero.
*/
unsigned int bits() const;
uint64_t GetLow64() const
{
static_assert(WIDTH >= 2, "Assertion WIDTH >= 2 failed (WIDTH = BITS / 32). BITS is a template parameter.");
return pn[0] | (uint64_t)pn[1] << 32;
}
};
/** 256-bit unsigned big integer. */
class arith_uint256 : public base_uint<256> {
public:
arith_uint256() {}
arith_uint256(const base_uint<256>& b) : base_uint<256>(b) {}
arith_uint256(uint64_t b) : base_uint<256>(b) {}
explicit arith_uint256(const std::string& str) : base_uint<256>(str) {}
/**
* The "compact" format is a representation of a whole
* number N using an unsigned 32bit number similar to a
* floating point format.
* The most significant 8 bits are the unsigned exponent of base 256.
* This exponent can be thought of as "number of bytes of N".
* The lower 23 bits are the mantissa.
* Bit number 24 (0x800000) represents the sign of N.
* N = (-1^sign) * mantissa * 256^(exponent-3)
*
* Satoshi's original implementation used BN_bn2mpi() and BN_mpi2bn().
* MPI uses the most significant bit of the first byte as sign.
* Thus 0x1234560000 is compact (0x05123456)
* and 0xc0de000000 is compact (0x0600c0de)
*
* Bitcoin only uses this "compact" format for encoding difficulty
* targets, which are unsigned 256bit quantities. Thus, all the
* complexities of the sign bit and using base 256 are probably an
* implementation accident.
*/
arith_uint256& SetCompact(uint32_t nCompact, bool *pfNegative = nullptr, bool *pfOverflow = nullptr);
uint32_t GetCompact(bool fNegative = false) const;
friend uint256 ArithToUint256(const arith_uint256 &);
friend arith_uint256 UintToArith256(const uint256 &);
};
uint256 ArithToUint256(const arith_uint256 &);
arith_uint256 UintToArith256(const uint256 &);
#endif // BITCOIN_ARITH_UINT256_H