forked from anicolson/DeepXi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
deepxi.py
289 lines (245 loc) · 16.6 KB
/
deepxi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
## FILE: deepxi.py
## DATE: 2019
## AUTHOR: Aaron Nicolson
## AFFILIATION: Signal Processing Laboratory, Griffith University
## BRIEF: 'DeepXi' training and testing.
##
## This Source Code Form is subject to the terms of the Mozilla Public
## License, v. 2.0. If a copy of the MPL was not distributed with this
## file, You can obtain one at http://mozilla.org/MPL/2.0/.
import tensorflow as tf
from tensorflow.python.data import Dataset, Iterator
import numpy as np
from datetime import datetime
from scipy.io.wavfile import read
import scipy.io.wavfile
import scipy.io as spio
import scipy.special as spsp
import os, random, math, time, sys, pickle
sys.path.insert(0, 'lib')
import feat, batch, residual, utils
np.set_printoptions(threshold=1e6)
## VARIABLE DESCRIPTIONS
# s - clean speech.
# d - noise.
# x - noisy speech.
## DEEP XI ARGUMENTS
def deepxi_args(args):
## DEPENDANT OPTIONS
args.model_path = args.model_path + '/' + args.ver # model save path.
args.train_s_path = args.set_path + '/train_clean_speech' # path to the clean speech training set.
args.train_d_path = args.set_path + '/train_noise' # path to the noise training set.
args.val_s_path = args.set_path + '/val_clean_speech' # path to the clean speech validation set.
args.val_d_path = args.set_path + '/val_noise' # path to the noise validation set.
args.out_path = args.out_path + '/' + args.ver + '/' + 'e' + str(args.epoch) # output path.
args.Nw = int(args.fs*args.Tw*0.001) # window length (samples).
args.Ns = int(args.fs*args.Ts*0.001) # window shift (samples).
args.NFFT = int(pow(2, np.ceil(np.log2(args.Nw)))) # number of DFT components.
## A PRIORI SNR IN DB STATS
mu_mat = spio.loadmat(args.stats_path + '/mu.mat') # mean of a priori SNR in dB from MATLAB.
args.mu = tf.constant(mu_mat['mu'], dtype=tf.float32)
sigma_mat = spio.loadmat(args.stats_path + '/sigma.mat') # standard deviation of a priori SNR in dB from MATLAB.
args.sigma = tf.constant(sigma_mat['sigma'], dtype=tf.float32)
## DATASETS
if args.train: ## TRAINING AND VALIDATION CLEAN SPEECH AND NOISE SET
args.train_s_list = batch.Train_list(args.train_s_path, '*.wav', 'clean') # clean speech training list.
args.train_d_list = batch.Train_list(args.train_d_path, '*.wav', 'noise') # noise training list.
if not os.path.exists(args.model_path): os.makedirs(args.model_path) # make model path directory.
args.val_s, args.val_s_len, args.val_snr, _ = batch.Batch(args.val_s_path, '*.wav',
list(range(args.min_snr, args.max_snr + 1))) # clean validation waveforms and lengths.
args.val_d, args.val_d_len, _, _ = batch.Batch(args.val_d_path, '*.wav',
list(range(args.min_snr, args.max_snr + 1))) # noise validation waveforms and lengths.
## INFERENCE
if args.infer: args.test_x, args.test_x_len, args.test_snr, args.test_fnames = batch.Batch(args.test_x_path, '*.wav', []) # noisy speech test waveforms and lengths.
return args
## DEEP XI ARTIFICIAL NEURAL NETWORK
class deepxi_net:
def __init__(self, args):
## PLACEHOLDERS
self.s_ph = tf.placeholder(tf.int16, shape=[None, None], name='s_ph') # clean speech placeholder.
self.d_ph = tf.placeholder(tf.int16, shape=[None, None], name='d_ph') # noise placeholder.
self.x_ph = tf.placeholder(tf.int16, shape=[None, None], name='x_ph') # noisy speech placeholder.
self.s_len_ph = tf.placeholder(tf.int32, shape=[None], name='s_len_ph') # clean speech sequence length placeholder.
self.d_len_ph = tf.placeholder(tf.int32, shape=[None], name='d_len_ph') # noise sequence length placeholder.
self.x_len_ph = tf.placeholder(tf.int32, shape=[None], name='x_len_ph') # noisy speech sequence length placeholder.
self.snr_ph = tf.placeholder(tf.float32, shape=[None], name='snr_ph') # SNR placeholder.
self.x_MS_ph = tf.placeholder(tf.float32, shape=[None, None, args.input_dim], name='x_MS_ph') # noisy speech MS placeholder.
self.x_MS_len_ph = tf.placeholder(tf.int32, shape=[None], name='x_MS_len_ph') # noisy speech MS sequence length placeholder.
self.target_ph = tf.placeholder(tf.float32, shape=[None, args.input_dim], name='target_phh') # training target placeholder.
self.keep_prob_ph = tf.placeholder(tf.float32, name='keep_prob_ph') # keep probability placeholder.
self.training_ph = tf.placeholder(tf.bool, name='training_ph') # training placeholder.
## FEATURE GRAPH
print('Preparing graph...')
self.P = tf.reduce_max(self.s_len_ph) # padded waveform length.
self.feature = feat.xi_mapped(self.s_ph, self.d_ph, self.s_len_ph, self.d_len_ph, self.snr_ph, args.Nw, args.Ns, args.NFFT,
args.fs, self.P, args.nconst, args.mu, args.sigma) # feature graph.
## RESNET
self.output = residual.Residual(self.x_MS_ph, self.x_MS_len_ph, self.keep_prob_ph,
self.training_ph, args.num_outputs, args)
## LOSS & OPTIMIZER
self.loss = residual.loss(self.target_ph, self.output, 'sigmoid_cross_entropy')
self.total_loss = tf.reduce_mean(self.loss, axis=0)
self.trainer, _ = residual.optimizer(self.total_loss, optimizer='adam', grad_clip=True)
## SAVE VARIABLES
self.saver = tf.train.Saver(max_to_keep=256)
## NUMBER OF PARAMETERS
if args.verbose: print("No. of trainable parameters: %g." % (np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()])))
## INFERENCE GRAPH
if args.infer:
## PLACEHOLDERS
self.output_ph = tf.placeholder(tf.float32, shape=[None, args.input_dim], name='output_ph') # network output placeholder.
self.x_MS_2D_ph = tf.placeholder(tf.float32, shape=[None, args.input_dim], name='x_MS_2D_ph') # noisy speech MS placeholder (in 2D form).
self.x_PS_ph = tf.placeholder(tf.float32, shape=[None, args.input_dim], name='x_PS_ph') # noisy speech PS placeholder.
self.xi_hat_ph = tf.placeholder(tf.float32, shape=[None, args.input_dim], name='xi_hat_ph') # a priori SNR estimate placeholder.
self.G_ph = tf.placeholder(tf.float32, shape=[None, args.input_dim], name='G_ph') # gain function placeholder.
## ANALYSIS
self.x = tf.truediv(tf.cast(tf.slice(tf.squeeze(self.x_ph), [0], [tf.squeeze(self.x_len_ph)]), tf.float32), args.nconst) # remove padding and normalise.
self.x_DFT = feat.stft(self.x, args.Nw, args.Ns, args.NFFT) # noisy speech single-sided short-time Fourier transform.
self.x_MS_3D = tf.expand_dims(tf.abs(self.x_DFT), 0) # noisy speech single-sided magnitude spectrum (in 3D form).
self.x_MS = tf.abs(self.x_DFT) # noisy speech single-sided magnitude spectrum.
self.x_PS = tf.angle(self.x_DFT) # noisy speech single-sided phase spectrum.
self.x_seq_len = feat.nframes(self.x_len_ph, args.Ns) # length of each sequence.
## MODIFICATION (SPEECH ENHANCEMENT)
if args.gain == 'ibm': self.G = tf.cast(tf.greater(self.xi_hat_ph, 1), tf.float32) # IBM gain function.
if args.gain == 'wf': self.G = tf.truediv(self.xi_hat_ph, tf.add(self.xi_hat_ph, 1.0)) # WF gain function.
if args.gain == 'srwf': self.G = tf.sqrt(tf.truediv(self.xi_hat_ph, tf.add(self.xi_hat_ph, 1.0))) # SRWF gain function.
if args.gain == 'irm': self.G = tf.sqrt(tf.truediv(self.xi_hat_ph, tf.add(self.xi_hat_ph, 1.0))) # IRM gain function.
if args.gain == 'cwf':
self.G = tf.sqrt(self.xi_hat_ph)
self.G = tf.truediv(self.G, tf.add(self.G, 1.0)) # cWF gain function.
self.s_hat_MS = tf.multiply(self.x_MS_2D_ph, self.G_ph) # enhanced speech single-sided magnitude spectrum.
## SYNTHESIS GRAPH
self.y_DFT = tf.cast(self.s_hat_MS, tf.complex64) * tf.exp(1j * tf.cast(self.x_PS_ph, tf.complex64)) # enhanced speech single-sided short-time Fourier transform.
self.y = tf.contrib.signal.inverse_stft(self.y_DFT, args.Nw, args.Ns, args.NFFT,
tf.contrib.signal.inverse_stft_window_fn(args.Ns,
forward_window_fn=tf.contrib.signal.hamming_window)) # synthesis.
## TRAINING
def train(sess, net, args):
print("Training...")
## CONTINUE FROM LAST EPOCH
if args.cont:
epoch_par = {'epoch_size': len(args.train_s_list), 'epoch_comp': args.epoch,
'start_idx': 0, 'end_idx': args.mbatch_size, 'val_error': float("inf")} # create epoch parameters.
with open('data/epoch_par_' + args.ver + '.p', 'wb') as f: pickle.dump(epoch_par, f) # save epoch parameters.
net.saver.restore(sess, args.model_path + '/epoch-' + str(args.epoch)) # load model from last epoch.
## TRAIN RAW NETWORK
else:
if os.path.isfile('data/epoch_par_' + args.ver + '.p'): os.remove('data/epoch_par_' + args.ver + '.p') # remove epoch parameters.
print('Creating epoch parameters, as no pickle file exists...')
epoch_par = {'epoch_size': len(args.train_s_list), 'epoch_comp': 0,
'start_idx': 0, 'end_idx': args.mbatch_size, 'val_error': float("inf")} # create epoch parameters.
if args.mbatch_size > epoch_par['epoch_size']: raise ValueError('Error: mini-batch size is greater than the epoch size.')
with open('data/epoch_par_' + args.ver + '.p', 'wb') as f:
pickle.dump(epoch_par, f) # save epoch parameters.
sess.run(tf.global_variables_initializer()) # initialise model variables.
net.saver.save(sess, args.model_path + '/epoch', global_step=epoch_par['epoch_comp']) # save model.
## TRAINING LOG
if not os.path.exists('log'): os.makedirs('log') # create log directory.
with open("log/val_error_" + args.ver + ".txt", "a") as results:
results.write("val err, train err, epoch count, D/T:\n")
train_err = 0; mbatch_count = 0
while args.train:
## MINI-BATCH GENERATION
mbatch_size_iter = epoch_par['end_idx'] - epoch_par['start_idx'] # number of examples in mini-batch for the training iteration.
train_s_mbatch, train_s_mbatch_seq_len = batch.Clean_mbatch(args.train_s_list,
mbatch_size_iter, epoch_par['start_idx'], epoch_par['end_idx']) # generate mini-batch of clean training waveforms.
train_d_mbatch, train_d_mbatch_seq_len = batch.Noise_mbatch(args.train_d_list,
mbatch_size_iter, train_s_mbatch_seq_len) # generate mini-batch of noise training waveforms.
train_snr_mbatch = np.random.randint(args.min_snr, args.max_snr + 1, epoch_par['end_idx'] - epoch_par['start_idx']) # generate mini-batch of SNR levels.
## TRAINING ITERATION
train_mbatch = sess.run(net.feature, feed_dict={net.s_ph: train_s_mbatch, net.d_ph: train_d_mbatch,
net.s_len_ph: train_s_mbatch_seq_len, net.d_len_ph: train_d_mbatch_seq_len, net.snr_ph: train_snr_mbatch}) # mini-batch.
[_, train_mbatch_err] = sess.run([net.trainer, net.total_loss], feed_dict={net.x_MS_ph: train_mbatch[0], net.target_ph: train_mbatch[1],
net.x_MS_len_ph: train_mbatch[2], net.training_ph: True}) # training iteration.
train_err += train_mbatch_err; mbatch_count += 1
print("E%d: %3.1f%% (train err %3.2f), E%d val err: %3.2f, %s, GPU:%s. " %
(epoch_par['epoch_comp'] + 1, 100*(epoch_par['end_idx']/epoch_par['epoch_size']), train_err/mbatch_count,
epoch_par['epoch_comp'], epoch_par['val_error'], args.ver, args.gpu), end="\r")
## UPDATE EPOCH PARAMETERS
epoch_par['start_idx'] += args.mbatch_size; epoch_par['end_idx'] += args.mbatch_size # start and end index of mini-batch.
## VALIDATION SET ERROR
if epoch_par['start_idx'] >= epoch_par['epoch_size']:
epoch_par['start_idx'] = 0; epoch_par['end_idx'] = args.mbatch_size # reset start and end index of mini-batch.
random.shuffle(args.train_s_list) # shuffle list.
start_idx = 0; end_idx = args.mbatch_size; val_flag = True; frames = 0; epoch_par['val_error'] = 0; # validation variables.
while val_flag:
val_mbatch = sess.run(net.feature, feed_dict={net.s_ph: args.val_s[start_idx:end_idx], net.d_ph: args.val_d[start_idx:end_idx],
net.s_len_ph: args.val_s_len[start_idx:end_idx], net.d_len_ph: args.val_d_len[start_idx:end_idx], net.snr_ph: args.val_snr[start_idx:end_idx]}) # mini-batch.
val_error_mbatch = sess.run(net.loss, feed_dict={net.x_MS_ph: val_mbatch[0], net.target_ph: val_mbatch[1],
net.x_MS_len_ph: val_mbatch[2], net.training_ph: False}) # validation error for each frame in mini-batch.
frames += val_error_mbatch.shape[0] # total number of frames.
epoch_par['val_error'] += np.sum(val_error_mbatch)
print("Validation error for Epoch %d: %3.2f%% complete. " %
(epoch_par['epoch_comp'] + 1, 100*(end_idx/args.val_s_len.shape[0])), end="\r")
start_idx += args.mbatch_size; end_idx += args.mbatch_size
if start_idx >= args.val_s_len.shape[0]: val_flag = False
elif end_idx > args.val_s_len.shape[0]: end_idx = args.val_s_len.shape[0]
epoch_par['val_error'] /= frames # validation error.
epoch_par['epoch_comp'] += 1 # an epoch has been completed.
net.saver.save(sess, args.model_path + '/epoch', global_step=epoch_par['epoch_comp']) # save model.
with open("log/val_error_" + args.ver + ".txt", "a") as results:
results.write("%g, %g, %d, %s.\n" % (epoch_par['val_error'], train_err/mbatch_count,
epoch_par['epoch_comp'], datetime.now().strftime('%Y-%m-%d %H:%M:%S')))
train_err = 0; mbatch_count = 0
epoch_par['val_flag'] = False # reset validation flag.
with open('data/epoch_par_' + args.ver + '.p', 'wb') as f:
pickle.dump(epoch_par, f)
if epoch_par['epoch_comp'] >= args.max_epochs:
args.train = False
print('\nTraining complete. Validation error for epoch %d: %g. ' %
(epoch_par['epoch_comp'], epoch_par['val_error']))
elif epoch_par['end_idx'] > epoch_par['epoch_size']: epoch_par['end_idx'] = epoch_par['epoch_size'] # if less than the mini-batch size of examples is left.
def infer(sess, net, args):
print("Inference...")
## LOAD MODEL
net.saver.restore(sess, args.model_path + '/epoch-' + str(args.epoch)) # load model from epoch.
## CONVERT STATISTIC CONSTANTS TO NUMPY ARRAY
mu_np = sess.run(args.mu); # place mean constant into a numpy array.
sigma_np = sess.run(args.sigma); # place standard deviation constant into a numpy array.
for j in range(len(args.test_x_len)):
x_MS_out = sess.run(net.x_MS, feed_dict={net.x_ph: [args.test_x[j]],
net.x_len_ph: [args.test_x_len[j]]})
x_MS_3D_out = sess.run(net.x_MS_3D, feed_dict={net.x_ph: [args.test_x[j]],
net.x_len_ph: [args.test_x_len[j]]})
x_PS_out = sess.run(net.x_PS, feed_dict={net.x_ph: [args.test_x[j]],
net.x_len_ph: [args.test_x_len[j]]})
x_seq_len_out = sess.run(net.x_seq_len, feed_dict={net.x_len_ph: [args.test_x_len[j]]})
output_out = sess.run(net.output, feed_dict={net.x_MS_ph: x_MS_3D_out, net.x_MS_len_ph: x_seq_len_out, net.training_ph: False}) # output of network.
output_out = utils.np_sigmoid(output_out)
xi_dB_hat_out = np.add(np.multiply(np.multiply(sigma_np, np.sqrt(2.0)), spsp.erfinv(np.subtract(np.multiply(2.0, output_out), 1))), mu_np); # a priori SNR estimate.
xi_hat_out = np.power(10.0, np.divide(xi_dB_hat_out, 10.0))
if args.gain == 'mmse-stsa': gain_out = feat.mmse_stsa(xi_hat_out, feat.ml_gamma_hat(xi_hat_out)) # MMSE-STSA estimator gain.
elif args.gain == 'mmse-lsa': gain_out = feat.mmse_lsa(xi_hat_out, feat.ml_gamma_hat(xi_hat_out)) # MMSE-LSA estimator gain.
else: gain_out = sess.run(net.G, feed_dict={net.xi_hat_ph: xi_hat_out}) # gain.
if args.out_type == 'raw': # raw outputs from network (.mat).
if not os.path.exists(args.out_path + '/raw'): os.makedirs(args.out_path + '/raw') # make output directory.
spio.savemat(args.out_path + '/raw/' + args.test_fnames[j] + '.mat', {'raw':output_out})
if args.out_type == 'xi_hat': # a priori SNR estimate output (.mat).
if not os.path.exists(args.out_path + '/xi_hat'): os.makedirs(args.out_path + '/xi_hat') # make output directory.
spio.savemat(args.out_path + '/xi_hat/' + args.test_fnames[j] + '.mat', {'xi_hat':xi_hat_out})
if args.out_type == 'gain': # gain function output (.mat).
if not os.path.exists(args.out_path + '/gain/' + gain): os.makedirs(args.out_path + '/gain/' + args.gain) # make output directory.
spio.savemat(args.out_path + '/gain/' + args.gain + '/' + args.test_fnames[j] + '.mat', {gain:gain_out})
if args.out_type == 'y': # enahnced speech output (.wav).
if not os.path.exists(args.out_path + '/y/' + args.gain): os.makedirs(args.out_path + '/y/' + args.gain) # make output directory.
y_out = sess.run(net.y, feed_dict={net.G_ph: gain_out, net.x_PS_ph: x_PS_out, net.x_MS_2D_ph: x_MS_out,
net.output_ph: output_out}) # enhanced speech output.
scipy.io.wavfile.write(args.out_path + '/y/' + args.gain + '/' + args.test_fnames[j] + '.wav', args.fs, y_out)
print("Inference (%s): %3.2f%%. " % (args.out_type, 100*((j+1)/len(args.test_x_len))), end="\r")
print('\nInference complete.')
if __name__ == '__main__':
## GET COMMAND LINE ARGUMENTS
args = utils.args()
## ARGUMENTS
args.ver = '3a'
args.blocks = ['C3'] + ['B5']*40 + ['O1']
args.epoch = 175 # for inference.
## TRAINING AND TESTING SET ARGUMENTS
args = deepxi_args(args)
## MAKE DEEP XI NNET
net = deepxi_net(args)
## GPU CONFIGURATION
config = utils.gpu_config(args.gpu)
with tf.Session(config=config) as sess:
if args.train: train(sess, net, args)
if args.infer: infer(sess, net, args)