forked from freqtrade/freqtrade
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_dataframe.py
executable file
·143 lines (122 loc) · 3.96 KB
/
plot_dataframe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#!/usr/bin/env python3
import sys
import logging
from plotly import tools
from plotly.offline import plot
import plotly.graph_objs as go
from freqtrade import exchange, analyze
from freqtrade.strategy.strategy import Strategy
import freqtrade.misc as misc
import freqtrade.optimize as optimize
logger = logging.getLogger(__name__)
def plot_parse_args(args):
parser = misc.common_args_parser('Graph dataframe')
misc.backtesting_options(parser)
misc.scripts_options(parser)
return parser.parse_args(args)
def plot_analyzed_dataframe(args) -> None:
"""
Calls analyze() and plots the returned dataframe
:param pair: pair as str
:return: None
"""
pair = args.pair.replace('-', '_')
timerange = misc.parse_timerange(args.timerange)
# Init strategy
strategy = Strategy()
strategy.init({'strategy': args.strategy})
tick_interval = strategy.ticker_interval
tickers = {}
if args.live:
logger.info('Downloading pair.')
# Init Bittrex to use public API
exchange._API = exchange.Bittrex({'key': '', 'secret': ''})
tickers[pair] = exchange.get_ticker_history(pair, tick_interval)
else:
tickers = optimize.load_data(args.datadir, pairs=[pair],
ticker_interval=tick_interval,
refresh_pairs=False,
timerange=timerange)
dataframes = optimize.tickerdata_to_dataframe(tickers)
dataframe = dataframes[pair]
dataframe = analyze.populate_buy_trend(dataframe)
dataframe = analyze.populate_sell_trend(dataframe)
if (len(dataframe.index) > 750):
logger.warn('Ticker contained more than 750 candles, clipping.')
df = dataframe.tail(750)
candles = go.Candlestick(x=df.date,
open=df.open,
high=df.high,
low=df.low,
close=df.close,
name='Price')
df_buy = df[df['buy'] == 1]
buys = go.Scattergl(
x=df_buy.date,
y=df_buy.close,
mode='markers',
name='buy',
marker=dict(
symbol='triangle-up-dot',
size=9,
line=dict(
width=1,
),
color='green',
)
)
df_sell = df[df['sell'] == 1]
sells = go.Scattergl(
x=df_sell.date,
y=df_sell.close,
mode='markers',
name='sell',
marker=dict(
symbol='triangle-down-dot',
size=9,
line=dict(
width=1,
),
color='red',
)
)
bb_lower = go.Scatter(
x=df.date,
y=df.bb_lowerband,
name='BB lower',
line={'color': "transparent"},
)
bb_upper = go.Scatter(
x=df.date,
y=df.bb_upperband,
name='BB upper',
fill="tonexty",
fillcolor="rgba(0,176,246,0.2)",
line={'color': "transparent"},
)
macd = go.Scattergl(x=df['date'], y=df['macd'], name='MACD')
macdsignal = go.Scattergl(x=df['date'], y=df['macdsignal'], name='MACD signal')
volume = go.Bar(x=df['date'], y=df['volume'], name='Volume')
fig = tools.make_subplots(
rows=3,
cols=1,
shared_xaxes=True,
row_width=[1, 1, 4],
vertical_spacing=0.0001,
)
fig.append_trace(candles, 1, 1)
fig.append_trace(bb_lower, 1, 1)
fig.append_trace(bb_upper, 1, 1)
fig.append_trace(buys, 1, 1)
fig.append_trace(sells, 1, 1)
fig.append_trace(volume, 2, 1)
fig.append_trace(macd, 3, 1)
fig.append_trace(macdsignal, 3, 1)
fig['layout'].update(title=args.pair)
fig['layout']['yaxis1'].update(title='Price')
fig['layout']['yaxis2'].update(title='Volume')
fig['layout']['yaxis3'].update(title='MACD')
plot(fig, filename='freqtrade-plot.html')
if __name__ == '__main__':
args = plot_parse_args(sys.argv[1:])
plot_analyzed_dataframe(args)