forked from freqtrade/freqtrade
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_profit.py
executable file
·156 lines (125 loc) · 4.47 KB
/
plot_profit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#!/usr/bin/env python3
import sys
import json
import numpy as np
from plotly import tools
from plotly.offline import plot
import plotly.graph_objs as go
import freqtrade.optimize as optimize
import freqtrade.misc as misc
from freqtrade.strategy.strategy import Strategy
def plot_parse_args(args):
parser = misc.common_args_parser('Graph profits')
# FIX: perhaps delete those backtesting options that are not feasible (shows up in -h)
misc.backtesting_options(parser)
misc.scripts_options(parser)
return parser.parse_args(args)
# data:: [ pair, profit-%, enter, exit, time, duration]
# data:: ['BTC_XMR', 0.00537847, '1511176800', '1511178000', 5057, 1]
# FIX: make use of the enter/exit dates to insert the
# profit more precisely into the pg array
def make_profit_array(data, px, filter_pairs=[]):
pg = np.zeros(px)
# Go through the trades
# and make an total profit
# array
for trade in data:
pair = trade[0]
if filter_pairs and pair not in filter_pairs:
continue
profit = trade[1]
tim = trade[4]
dur = trade[5]
ix = tim + dur - 1
if ix < px:
pg[ix] += profit
# rewrite the pg array to go from
# total profits at each timeframe
# to accumulated profits
pa = 0
for x in range(0, len(pg)):
p = pg[x] # Get current total percent
pa += p # Add to the accumulated percent
pg[x] = pa # write back to save memory
return pg
def plot_profit(args) -> None:
"""
Plots the total profit for all pairs.
Note, the profit calculation isn't realistic.
But should be somewhat proportional, and therefor useful
in helping out to find a good algorithm.
"""
# We need to use the same pairs, same tick_interval
# and same timeperiod as used in backtesting
# to match the tickerdata against the profits-results
filter_pairs = args.pair
config = misc.load_config(args.config)
config.update({'strategy': args.strategy})
# Init strategy
strategy = Strategy()
strategy.init(config)
pairs = config['exchange']['pair_whitelist']
if filter_pairs:
filter_pairs = filter_pairs.split(',')
pairs = list(set(pairs) & set(filter_pairs))
print('Filter, keep pairs %s' % pairs)
timerange = misc.parse_timerange(args.timerange)
tickers = optimize.load_data(args.datadir, pairs=pairs,
ticker_interval=strategy.ticker_interval,
refresh_pairs=False,
timerange=timerange)
dataframes = optimize.preprocess(tickers)
# NOTE: the dataframes are of unequal length,
# 'dates' is an merged date array of them all.
dates = misc.common_datearray(dataframes)
max_x = dates.size
# Make an average close price of all the pairs that was involved.
# this could be useful to gauge the overall market trend
# We are essentially saying:
# array <- sum dataframes[*]['close'] / num_items dataframes
# FIX: there should be some onliner numpy/panda for this
avgclose = np.zeros(max_x)
num = 0
for pair, pair_data in dataframes.items():
close = pair_data['close']
maxprice = max(close) # Normalize price to [0,1]
print('Pair %s has length %s' % (pair, len(close)))
for x in range(0, len(close)):
avgclose[x] += close[x] / maxprice
# avgclose += close
num += 1
avgclose /= num
# Load the profits results
# And make an profits-growth array
filename = 'backtest-result.json'
with open(filename) as file:
data = json.load(file)
pg = make_profit_array(data, max_x, filter_pairs)
#
# Plot the pairs average close prices, and total profit growth
#
avgclose = go.Scattergl(
x=dates,
y=avgclose,
name='Avg close price',
)
profit = go.Scattergl(
x=dates,
y=pg,
name='Profit',
)
fig = tools.make_subplots(rows=3, cols=1, shared_xaxes=True, row_width=[1, 1, 1])
fig.append_trace(avgclose, 1, 1)
fig.append_trace(profit, 2, 1)
for pair in pairs:
pg = make_profit_array(data, max_x, pair)
pair_profit = go.Scattergl(
x=dates,
y=pg,
name=pair,
)
fig.append_trace(pair_profit, 3, 1)
plot(fig, filename='freqtrade-profit-plot.html')
if __name__ == '__main__':
args = plot_parse_args(sys.argv[1:])
plot_profit(args)