forked from keras-team/keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_model_saving.py
266 lines (208 loc) · 7.54 KB
/
test_model_saving.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import pytest
import os
import tempfile
import numpy as np
from numpy.testing import assert_allclose
from keras.models import Model, Sequential
from keras.layers import Dense, Dropout, Lambda, RepeatVector, TimeDistributed
from keras.layers import Input
from keras import optimizers
from keras import objectives
from keras import metrics
from keras.utils.test_utils import keras_test
from keras.models import save_model, load_model
@keras_test
def test_sequential_model_saving():
model = Sequential()
model.add(Dense(2, input_dim=3))
model.add(RepeatVector(3))
model.add(TimeDistributed(Dense(3)))
model.compile(loss=objectives.MSE,
optimizer=optimizers.RMSprop(lr=0.0001),
metrics=[metrics.categorical_accuracy],
sample_weight_mode='temporal')
x = np.random.random((1, 3))
y = np.random.random((1, 3, 3))
model.train_on_batch(x, y)
out = model.predict(x)
_, fname = tempfile.mkstemp('.h5')
save_model(model, fname)
new_model = load_model(fname)
os.remove(fname)
out2 = new_model.predict(x)
assert_allclose(out, out2, atol=1e-05)
# test that new updates are the same with both models
x = np.random.random((1, 3))
y = np.random.random((1, 3, 3))
model.train_on_batch(x, y)
new_model.train_on_batch(x, y)
out = model.predict(x)
out2 = new_model.predict(x)
assert_allclose(out, out2, atol=1e-05)
@keras_test
def test_sequential_model_saving_2():
# test with custom optimizer, loss
custom_opt = optimizers.rmsprop
custom_loss = objectives.mse
model = Sequential()
model.add(Dense(2, input_dim=3))
model.add(Dense(3))
model.compile(loss=custom_loss, optimizer=custom_opt(), metrics=['acc'])
x = np.random.random((1, 3))
y = np.random.random((1, 3))
model.train_on_batch(x, y)
out = model.predict(x)
_, fname = tempfile.mkstemp('.h5')
save_model(model, fname)
model = load_model(fname,
custom_objects={'custom_opt': custom_opt,
'custom_loss': custom_loss})
os.remove(fname)
out2 = model.predict(x)
assert_allclose(out, out2, atol=1e-05)
@keras_test
def test_fuctional_model_saving():
input = Input(shape=(3,))
x = Dense(2)(input)
output = Dense(3)(x)
model = Model(input, output)
model.compile(loss=objectives.MSE,
optimizer=optimizers.RMSprop(lr=0.0001),
metrics=[metrics.categorical_accuracy])
x = np.random.random((1, 3))
y = np.random.random((1, 3))
model.train_on_batch(x, y)
out = model.predict(x)
_, fname = tempfile.mkstemp('.h5')
save_model(model, fname)
model = load_model(fname)
os.remove(fname)
out2 = model.predict(x)
assert_allclose(out, out2, atol=1e-05)
@keras_test
def test_saving_without_compilation():
model = Sequential()
model.add(Dense(2, input_dim=3))
model.add(Dense(3))
model.compile(loss='mse', optimizer='sgd', metrics=['acc'])
_, fname = tempfile.mkstemp('.h5')
save_model(model, fname)
model = load_model(fname)
os.remove(fname)
@keras_test
def test_saving_right_after_compilation():
model = Sequential()
model.add(Dense(2, input_dim=3))
model.add(Dense(3))
model.compile(loss='mse', optimizer='sgd', metrics=['acc'])
model.model._make_train_function()
_, fname = tempfile.mkstemp('.h5')
save_model(model, fname)
model = load_model(fname)
os.remove(fname)
@keras_test
def test_loading_weights_by_name():
"""
test loading model weights by name on:
- sequential model
"""
# test with custom optimizer, loss
custom_opt = optimizers.rmsprop
custom_loss = objectives.mse
# sequential model
model = Sequential()
model.add(Dense(2, input_dim=3, name="rick"))
model.add(Dense(3, name="morty"))
model.compile(loss=custom_loss, optimizer=custom_opt(), metrics=['acc'])
x = np.random.random((1, 3))
y = np.random.random((1, 3))
model.train_on_batch(x, y)
out = model.predict(x)
old_weights = [layer.get_weights() for layer in model.layers]
_, fname = tempfile.mkstemp('.h5')
model.save_weights(fname)
# delete and recreate model
del(model)
model = Sequential()
model.add(Dense(2, input_dim=3, name="rick"))
model.add(Dense(3, name="morty"))
model.compile(loss=custom_loss, optimizer=custom_opt(), metrics=['acc'])
# load weights from first model
model.load_weights(fname, by_name=True)
os.remove(fname)
out2 = model.predict(x)
assert_allclose(out, out2, atol=1e-05)
for i in range(len(model.layers)):
new_weights = model.layers[i].get_weights()
for j in range(len(new_weights)):
assert_allclose(old_weights[i][j], new_weights[j], atol=1e-05)
@keras_test
def test_loading_weights_by_name_2():
"""
test loading model weights by name on:
- both sequential and functional api models
- different architecture with shared names
"""
# test with custom optimizer, loss
custom_opt = optimizers.rmsprop
custom_loss = objectives.mse
# sequential model
model = Sequential()
model.add(Dense(2, input_dim=3, name="rick"))
model.add(Dense(3, name="morty"))
model.compile(loss=custom_loss, optimizer=custom_opt(), metrics=['acc'])
x = np.random.random((1, 3))
y = np.random.random((1, 3))
model.train_on_batch(x, y)
out = model.predict(x)
old_weights = [layer.get_weights() for layer in model.layers]
_, fname = tempfile.mkstemp('.h5')
model.save_weights(fname)
# delete and recreate model using Functional API
del(model)
data = Input(shape=(3,))
rick = Dense(2, name="rick")(data)
jerry = Dense(3, name="jerry")(rick) # add 2 layers (but maintain shapes)
jessica = Dense(2, name="jessica")(jerry)
morty = Dense(3, name="morty")(jessica)
model = Model(input=[data], output=[morty])
model.compile(loss=custom_loss, optimizer=custom_opt(), metrics=['acc'])
# load weights from first model
model.load_weights(fname, by_name=True)
os.remove(fname)
out2 = model.predict(x)
assert np.max(np.abs(out - out2)) > 1e-05
rick = model.layers[1].get_weights()
jerry = model.layers[2].get_weights()
jessica = model.layers[3].get_weights()
morty = model.layers[4].get_weights()
assert_allclose(old_weights[0][0], rick[0], atol=1e-05)
assert_allclose(old_weights[0][1], rick[1], atol=1e-05)
assert_allclose(old_weights[1][0], morty[0], atol=1e-05)
assert_allclose(old_weights[1][1], morty[1], atol=1e-05)
assert_allclose(np.zeros_like(jerry[1]), jerry[1]) # biases init to 0
assert_allclose(np.zeros_like(jessica[1]), jessica[1]) # biases init to 0
# a function to be called from the Lambda layer
def square_fn(x):
return x * x
@keras_test
def test_saving_lambda_custom_objects():
input = Input(shape=(3,))
x = Lambda(lambda x: square_fn(x), output_shape=(3,))(input)
output = Dense(3)(x)
model = Model(input, output)
model.compile(loss=objectives.MSE,
optimizer=optimizers.RMSprop(lr=0.0001),
metrics=[metrics.categorical_accuracy])
x = np.random.random((1, 3))
y = np.random.random((1, 3))
model.train_on_batch(x, y)
out = model.predict(x)
_, fname = tempfile.mkstemp('.h5')
save_model(model, fname)
model = load_model(fname, custom_objects={'square_fn': square_fn})
os.remove(fname)
out2 = model.predict(x)
assert_allclose(out, out2, atol=1e-05)
if __name__ == '__main__':
pytest.main([__file__])