-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrqres.plot.Rd
executable file
·76 lines (60 loc) · 3.78 KB
/
rqres.plot.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
\name{rqres.plot}
\alias{rqres.plot}
\alias{get.rqres}
\title{Creating and Plotting Randomized Quantile Residuals}
\description{
This function plots worm plots, van Buuren and Fredriks M. (2001), or QQ-plots of the normalized randomized quantile residuals (Dunn and Smyth, 1996) for a model using a discrete GAMLSS family distribution.
}
\usage{
rqres.plot(obj = NULL, howmany = 6, plot.type = c("few", "all"),
type = c("wp", "QQ"), xlim = NULL, ylim = NULL, ...)
get.rqres(obj = NULL, howmany = 10, order = FALSE)
}
\arguments{
\item{obj}{a fitted GAMLSS model object from a "discrete" type of family }
\item{howmany}{The number randomise quantile residuals required i.e. \code{howmany=6}}
\item{plot.type}{whether to plot few of the randomised quantile residual realisations, \code{"few"} in a separate plots (there must be less than 8) or all \code{"all"} in one plot (with their median)}
\item{type}{whether to plot worm plots \code{"wp"}or QQ plots \code{"QQ"} with default worm plots}
\item{xlim}{setting manually the \code{xlim} of the graph}
\item{ylim}{setting manually the \code{ylim} of the graph}
\item{order}{whether to order the ealization of randomised quantile residuals}
\item{\dots}{for extra arguments to be passed to \code{wp()}}
}
\details{For discrete family distributions, the \code{\link{gamlss}()} function saves on exit one realization of randomized quantile residuals which
can be plotted using the generic function \code{plot} which calls the \code{plot.gamlss}. Looking at only one realization can be misleading, so the
current function creates QQ-plots for several
realizations. The function allows up to 10 QQ-plots to be plotted. Occasionally one wishes to create a lot of realizations
and then take a median of them (separately for each ordered value) to create a single median realization. The option \code{all} in combinations
with the option \code{howmany} creates a
QQ-plot of the medians of the normalized randomized quantile residuals. These 'median' randomized quantile residuals can be saved using the option
(\code{save=TRUE}).
}
\value{
If \code{save} it is TRUE then the vector of the median residuals is saved.
}
\references{ Dunn, P. K. and Smyth, G. K. (1996) Randomised quantile residuals,
\emph{J. Comput. Graph. Statist.}, \bold{5}, 236--244
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion),
\emph{Appl. Statist.}, \bold{54}, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019)
\emph{Distributions for modeling location, scale, and shape: Using GAMLSS in R}, Chapman and Hall/CRC. An older version can be found in \url{https://www.gamlss.com/}.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R.
\emph{Journal of Statistical Software}, Vol. \bold{23}, Issue 7, Dec 2007, \url{https://www.jstatsoft.org/v23/i07/}.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017)
\emph{Flexible Regression and Smoothing: Using GAMLSS in R}, Chapman and Hall/CRC.
(see also \url{https://www.gamlss.com/}).
van Buuren and Fredriks M. (2001) Worm plot: simple diagnostic device for modelling growth reference curves.
\emph{Statistics in Medicine}, \bold{20}, 1259--1277
}
\author{Mikis Stasinopoulos}
\seealso{ \code{\link{plot.gamlss}}, \code{\link{gamlss}} }
\examples{
data(aids) # fitting a model from a discrete distribution
h<-gamlss(y~pb(x)+qrt, family=NBI, data=aids) #
plot(h)
# plot qq- plots from 6 realization of the randomized quantile residuals
rqres.plot(h)
# a worm-plot of the medians from 10 realizations
rqres.plot(h,howmany=40,plot="all") #
}
\keyword{regression}%