forked from ANTsX/ANTs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeprecate_itkFEMElement3DC0LinearTriangular.cxx
350 lines (303 loc) · 9.77 KB
/
deprecate_itkFEMElement3DC0LinearTriangular.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
// disable debug warnings in MS compiler
#ifdef _MSC_VER
#pragma warning(disable: 4786)
#endif
#include "itkFEMElement3DC0LinearTriangular.h"
#include "vnl/vnl_math.h"
#include "vnl/algo/vnl_svd.h"
#include "vnl/algo/vnl_qr.h"
namespace itk
{
namespace fem
{
const Element3DC0LinearTriangular::Float
Element3DC0LinearTriangular
::trigGaussRuleInfo[6][7][4] =
{
// order=0, never used
{
{
0.0
}
},
// order=1
// <-------------------------- point ---------------------------> <-------weight----->
{
{
0.33333333333333333, 0.33333333333333333, 0.33333333333333333, 1.00000000000000000
}
},
// order=2
{
{
0.66666666666666667, 0.16666666666666667, 0.16666666666666667, 0.33333333333333333
},
{
0.16666666666666667, 0.66666666666666667, 0.16666666666666667, 0.33333333333333333
},
{
0.16666666666666667, 0.16666666666666667, 0.66666666666666667, 0.33333333333333333
}
},
// order=3, p=-3 in the book
{
{
0.00000000000000000, 0.50000000000000000, 0.50000000000000000, 0.33333333333333333
},
{
0.50000000000000000, 0.00000000000000000, 0.50000000000000000, 0.33333333333333333
},
{
0.50000000000000000, 0.50000000000000000, 0.00000000000000000, 0.33333333333333333
}
},
// order=4, p=6 in the book
{
{
0.10810301816807023, 0.44594849091596489, 0.44594849091596489, 0.22338158967801147
},
{
0.44594849091596489, 0.10810301816807023, 0.44594849091596489, 0.22338158967801147
},
{
0.44594849091596489, 0.44594849091596489, 0.10810301816807023, 0.22338158967801147
},
{
0.81684757298045851, 0.09157621350977074, 0.09157621350977074, 0.10995174365532187
},
{
0.09157621350977074, 0.81684757298045851, 0.09157621350977074, 0.10995174365532187
},
{
0.09157621350977074, 0.09157621350977074, 0.81684757298045851, 0.10995174365532187
}
},
// order=5, p=7 in the book
{
{
0.33333333333333333, 0.33333333333333333, 0.33333333333333333, 0.22500000000000000
},
{
0.79742698535308732, 0.10128650732345634, 0.10128650732345634, 0.12593918054482715
},
{
0.10128650732345634, 0.79742698535308732, 0.10128650732345634, 0.12593918054482715
},
{
0.10128650732345634, 0.10128650732345634, 0.79742698535308732, 0.12593918054482715
},
{
0.05971587178976982, 0.47014206410511509, 0.47014206410511509, 0.13239415278850618
},
{
0.47014206410511509, 0.05971587178976982, 0.47014206410511509, 0.13239415278850618
},
{
0.47014206410511509, 0.47014206410511509, 0.05971587178976982, 0.13239415278850618
}
}
};
const unsigned int
Element3DC0LinearTriangular
::Nip[6] =
{
0, 1, 3, 3, 6, 7
};
void
Element3DC0LinearTriangular
::GetIntegrationPointAndWeight(unsigned int i, VectorType& pt, Float& w, unsigned int order) const
{
// FIXME: range checking
// default integration order
if( order == 0 || order > 5 )
{
order = DefaultIntegrationOrder;
}
pt.set_size(3);
/*
* We provide implementation for 5 different integration rules
* as defined in chapter 24 - Implementation of Iso-P Truangular
* Elements, of http://titan.colorado.edu/courses.d/IFEM.d/.
*
* Note that the order parameter here does not correspond to the
* actual order of integration, but rather the degree of polynomials
* that are exactly integrated. In addition, there are two integration
* rules for polynomials of 2nd degree. In order to allow using both of
* them, we assign the index number 3 to the second one. Note that this
* does not mean that the rule is capable of integrating the polynomials
* of 3rd degree. It's just an index of a rule.
*/
pt.copy_in(trigGaussRuleInfo[order][i]);
// We scale the weight by 0.5, to take into account
// the factor that must be applied when integrating.
w = 0.5 * trigGaussRuleInfo[order][i][3];
}
unsigned int
Element3DC0LinearTriangular
::GetNumberOfIntegrationPoints(unsigned int order) const
{
// FIXME: range checking
// default integration order
if( order == 0 )
{
order = DefaultIntegrationOrder;
}
return Nip[order];
}
Element3DC0LinearTriangular::VectorType
Element3DC0LinearTriangular
::ShapeFunctions( const VectorType& pt ) const
{
// Linear triangular element has 3 shape functions
VectorType shapeF(3);
// Shape functions are equal to coordinates
shapeF = pt;
return shapeF;
}
void
Element3DC0LinearTriangular
::ShapeFunctionDerivatives( const VectorType &, MatrixType& shapeD ) const
{
// Matrix of shape functions derivatives is an
// identity matrix for linear triangular element.
shapeD.set_size(3, 3);
shapeD.fill(0.0);
shapeD[0][0] = 1.0;
shapeD[1][1] = 1.0;
shapeD[2][2] = 1.0;
}
bool
Element3DC0LinearTriangular
::GetLocalFromGlobalCoordinates( const VectorType& globalPt, VectorType& localPt) const
{
Float x, x1, x2, x3,
y, y1, y2, y3,
z, z1, z2, z3,
A;
localPt.set_size(3);
x = globalPt[0]; y = globalPt[1]; z = globalPt[2];
x1 = this->m_node[0]->GetCoordinates()[0]; y1 = this->m_node[0]->GetCoordinates()[1];
x2 = this->m_node[1]->GetCoordinates()[0]; y2 = this->m_node[1]->GetCoordinates()[1];
x3 = this->m_node[2]->GetCoordinates()[0]; y3 = this->m_node[2]->GetCoordinates()[1];
z1 = this->m_node[0]->GetCoordinates()[2];
z2 = this->m_node[1]->GetCoordinates()[2];
z3 = this->m_node[2]->GetCoordinates()[2];
// FIXME!
A = x1 * y2 - x2 * y1 + x3 * y1 - x1 * y3 + x2 * y3 - x3 * y2;
// localPt[0]=((y2 - y3)*x + (x3 - x2)*y + x2*y3 - x3*y2)/A;
// localPt[1]=((y3 - y1)*x + (x1 - x3)*y + x3*y1 - x1*y3)/A;
// localPt[2]=((y1 - y2)*x + (x2 - x1)*y + x1*y2 - x2*y1)/A;
if( localPt[0] < 0.0 || localPt[0] > 1.0 || localPt[1] < 0.0 || localPt[1] > 1.0 || localPt[2] < 0.0 || localPt[2] >
1.0 )
{
return false;
}
else
{
return true;
}
}
Element3DC0LinearTriangular::Float
Element3DC0LinearTriangular
::JacobianDeterminant( const VectorType& pt, const MatrixType* pJ ) const
{
// use heron's formula
int na = 0;
int nb = 1;
int nc = 2;
VectorType A = this->GetNode(na)->GetCoordinates();
VectorType B = this->GetNode(nb)->GetCoordinates();
VectorType C = this->GetNode(nc)->GetCoordinates();
VectorType BA = B - A;
VectorType CA = C - A;
VectorType CB = C - B;
float L1 = CB.magnitude();
float L2 = CA.magnitude();
float L3 = BA.magnitude();
float s = (L1 + L2 + L3) * .5;
Float det = sqrt( s * (s - L1) * (s - L2) * (s - L3) );
/*
// use the formula for tri pqr, area is mag( vec(pq) cross vec(pr) )
VectorType a=this->GetNode(2)->GetCoordinates()-this->GetNode(0)->GetCoordinates();
VectorType b=this->GetNode(1)->GetCoordinates()-this->GetNode(0)->GetCoordinates();
VectorType c;
c.set_size(3);
c[0] = a[1] * b[2] - a[2] * b[1];
c[1] = a[2] * b[0] - a[0] * b[2];
c[2] = a[0] * b[1] - a[1] * b[0];
Float det=0.5*c.magnitude();
*/
// ::std::cout << " area " << det << std::endl;
return det;
}
void
Element3DC0LinearTriangular
::JacobianInverse( const VectorType& pt, MatrixType& invJ, const MatrixType* pJ ) const
{
MatrixType* pJlocal = 0;
// If Jacobian was not provided, we
// need to compute it here
if( pJ == 0 )
{
pJlocal = new MatrixType();
this->Jacobian( pt, *pJlocal );
pJ = pJlocal;
}
// invJ=vnl_svd_inverse<Float>(*pJ);
invJ = vnl_qr<Float>(*pJ).inverse();
/*
// Note that inverse of Jacobian is not quadratic matrix
MatrixType invJ2;
invJ2.set_size(3,3);
invJ2.fill(0);
Float idet=1.0/this->JacobianDeterminant( pt, pJ );
invJ2[0][0]=idet*((*pJ)[1][1]-(*pJ)[2][1]);
invJ2[0][1]=idet*((*pJ)[2][1]-(*pJ)[0][1]);
invJ2[0][2]=idet*((*pJ)[0][1]-(*pJ)[1][1]);
invJ2[1][0]=idet*((*pJ)[2][0]-(*pJ)[1][0]);
invJ2[1][1]=idet*((*pJ)[0][0]-(*pJ)[2][0]);
invJ2[1][2]=idet*((*pJ)[1][0]-(*pJ)[0][0]);
::std::cout << " pJ " << std::endl;
::std::cout << (*pJ) << std::endl;
::std::cout << " invJ " << std::endl;
::std::cout << (invJ) << std::endl;
::std::cout << " invJ2 " << std::endl;
::std::cout << (invJ2) << std::endl;*/
delete pJlocal;
}
/*
* Draw the element on device context pDC.
*/
#ifdef FEM_BUILD_VISUALIZATION
void
Element3DC0LinearTriangular
::Draw(CDC* pDC, Solution::ConstPointer sol) const
{
int x1 = m_node[0]->GetCoordinates()[0] * DC_Scale;
int y1 = m_node[0]->GetCoordinates()[1] * DC_Scale;
int x2 = m_node[1]->GetCoordinates()[0] * DC_Scale;
int y2 = m_node[1]->GetCoordinates()[1] * DC_Scale;
int x3 = m_node[2]->GetCoordinates()[0] * DC_Scale;
int y3 = m_node[2]->GetCoordinates()[1] * DC_Scale;
x1 += sol->GetSolutionValue(this->m_node[0]->GetDegreeOfFreedom(0) ) * DC_Scale;
y1 += sol->GetSolutionValue(this->m_node[0]->GetDegreeOfFreedom(1) ) * DC_Scale;
x2 += sol->GetSolutionValue(this->m_node[1]->GetDegreeOfFreedom(0) ) * DC_Scale;
y2 += sol->GetSolutionValue(this->m_node[1]->GetDegreeOfFreedom(1) ) * DC_Scale;
x3 += sol->GetSolutionValue(this->m_node[2]->GetDegreeOfFreedom(0) ) * DC_Scale;
y3 += sol->GetSolutionValue(this->m_node[2]->GetDegreeOfFreedom(1) ) * DC_Scale;
pDC->MoveTo(x1, y1);
pDC->LineTo(x2, y2);
pDC->LineTo(x3, y3);
pDC->LineTo(x1, y1);
}
#endif
}
} // end namespace itk::fem