forked from ANTsX/ANTs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
antsJointHistogramParzenWindowsListSampleFunction.hxx
301 lines (274 loc) · 10.9 KB
/
antsJointHistogramParzenWindowsListSampleFunction.hxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
/*=========================================================================
Program: Advanced Normalization Tools
Copyright (c) ConsortiumOfANTS. All rights reserved.
See accompanying COPYING.txt or
https://github.com/stnava/ANTs/blob/master/ANTSCopyright.txt
for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __antsJointHistogramParzenWindowsListSampleFunction_hxx
#define __antsJointHistogramParzenWindowsListSampleFunction_hxx
#include "itkArray.h"
#include "itkBSplineInterpolateImageFunction.h"
#include "itkContinuousIndex.h"
#include "itkDiscreteGaussianImageFilter.h"
#include "itkDivideByConstantImageFilter.h"
#include "itkStatisticsImageFilter.h"
namespace itk
{
namespace ants
{
namespace Statistics
{
template <typename TListSample, typename TOutput, typename TCoordRep>
JointHistogramParzenWindowsListSampleFunction<TListSample, TOutput, TCoordRep>::
JointHistogramParzenWindowsListSampleFunction()
{
this->m_NumberOfJointHistogramBins = 32;
this->m_Sigma = 1.0;
this->m_UseNNforJointHistIncrements = true;
}
template <typename TListSample, typename TOutput, typename TCoordRep>
JointHistogramParzenWindowsListSampleFunction<TListSample, TOutput, TCoordRep>::
~JointHistogramParzenWindowsListSampleFunction()
{}
template <typename TListSample, typename TOutput, typename TCoordRep>
void
JointHistogramParzenWindowsListSampleFunction<TListSample, TOutput, TCoordRep>::IncrementJointHistogram(
RealType eigenvalue1,
RealType eigenvalue2,
unsigned int which_hist)
{
RealType newWeight = 1.0;
// now define two joint histograms, one for shape, one for orientation.
// first, the shape histogram --- 0,0 origin and spacing of 1
if (this->m_JointHistogramImages.size() == which_hist)
{
typename JointHistogramImageType::SpacingType spacing;
spacing.Fill(1);
typename JointHistogramImageType::PointType origin;
origin.Fill(0);
typename JointHistogramImageType::SizeType size;
size.Fill(this->m_NumberOfJointHistogramBins);
typename JointHistogramImageType::DirectionType direction;
direction.SetIdentity();
typename JointHistogramImageType::Pointer curJHI =
AllocImage<JointHistogramImageType>(size, spacing, origin, regions, 0);
this->m_JointHistogramImages.push_back(curJHI);
}
typename JointHistogramImageType::PointType shapePoint;
if (eigenvalue1 > 1)
{
eigenvalue1 = 1;
}
if (eigenvalue2 > 1)
{
eigenvalue2 = 1;
}
if (eigenvalue1 < 0)
{
eigenvalue1 = 0;
}
if (eigenvalue2 < 0)
{
eigenvalue2 = 0;
}
shapePoint[0] = eigenvalue1 * (this->m_NumberOfJointHistogramBins - 1);
shapePoint[1] = eigenvalue2 * (this->m_NumberOfJointHistogramBins - 1);
ContinuousIndex<double, 2> shapeCidx;
this->m_JointHistogramImages[which_hist]->TransformPhysicalPointToContinuousIndex(shapePoint, shapeCidx);
typename JointHistogramImageType::IndexType shapeIdx;
/** Nearest neighbor increment to JH */
if (this->m_UseNNforJointHistIncrements)
{
shapeIdx[0] = std::floor(shapeCidx[0] + 0.5);
shapeIdx[1] = std::floor(shapeCidx[1] + 0.5);
if (this->m_JointHistogramImages[which_hist]->GetLargestPossibleRegion().IsInside(shapeIdx))
{
RealType oldWeight = this->m_JointHistogramImages[which_hist]->GetPixel(shapeIdx);
this->m_JointHistogramImages[which_hist]->SetPixel(shapeIdx, 1 + oldWeight);
}
}
else
{
/** linear addition */
shapeIdx[0] = static_cast<typename JointHistogramImageType::IndexType::IndexValueType>(std::floor(shapeCidx[0]));
shapeIdx[1] = static_cast<typename JointHistogramImageType::IndexType::IndexValueType>(std::floor(shapeCidx[1]));
RealType dist1 = sqrt((shapeCidx[0] - shapeIdx[0]) * (shapeCidx[0] - shapeIdx[0]) +
(shapeCidx[1] - shapeIdx[1]) * (shapeCidx[1] - shapeIdx[1]));
shapeIdx[0]++;
RealType dist2 = sqrt((shapeCidx[0] - shapeIdx[0]) * (shapeCidx[0] - shapeIdx[0]) +
(shapeCidx[1] - shapeIdx[1]) * (shapeCidx[1] - shapeIdx[1]));
shapeIdx[1]++;
RealType dist3 = sqrt((shapeCidx[0] - shapeIdx[0]) * (shapeCidx[0] - shapeIdx[0]) +
(shapeCidx[1] - shapeIdx[1]) * (shapeCidx[1] - shapeIdx[1]));
shapeIdx[0]--;
RealType dist4 = sqrt((shapeCidx[0] - shapeIdx[0]) * (shapeCidx[0] - shapeIdx[0]) +
(shapeCidx[1] - shapeIdx[1]) * (shapeCidx[1] - shapeIdx[1]));
RealType distsum = dist1 + dist2 + dist3 + dist4;
dist1 /= distsum;
dist2 /= distsum;
dist3 /= distsum;
dist4 /= distsum;
shapeIdx[0] = static_cast<typename JointHistogramImageType::IndexType::IndexValueType>(std::floor(shapeCidx[0]));
shapeIdx[1] = static_cast<typename JointHistogramImageType::IndexType::IndexValueType>(std::floor(shapeCidx[1]));
if (this->m_JointHistogramImages[which_hist]->GetLargestPossibleRegion().IsInside(shapeIdx))
{
RealType oldWeight = this->m_JointHistogramImages[which_hist]->GetPixel(shapeIdx);
this->m_JointHistogramImages[which_hist]->SetPixel(shapeIdx, (1.0 - dist1) * newWeight + oldWeight);
}
shapeIdx[0]++;
if (this->m_JointHistogramImages[which_hist]->GetLargestPossibleRegion().IsInside(shapeIdx))
{
RealType oldWeight = this->m_JointHistogramImages[which_hist]->GetPixel(shapeIdx);
this->m_JointHistogramImages[which_hist]->SetPixel(shapeIdx, (1.0 - dist2) * newWeight + oldWeight);
}
shapeIdx[1]++;
if (this->m_JointHistogramImages[which_hist]->GetLargestPossibleRegion().IsInside(shapeIdx))
{
RealType oldWeight = this->m_JointHistogramImages[which_hist]->GetPixel(shapeIdx);
this->m_JointHistogramImages[which_hist]->SetPixel(shapeIdx, (1.0 - dist3) * newWeight + oldWeight);
}
shapeIdx[0]--;
if (this->m_JointHistogramImages[which_hist]->GetLargestPossibleRegion().IsInside(shapeIdx))
{
RealType oldWeight = this->m_JointHistogramImages[which_hist]->GetPixel(shapeIdx);
this->m_JointHistogramImages[which_hist]->SetPixel(shapeIdx, (1.0 - dist4) * newWeight + oldWeight);
}
}
return;
}
template <typename TListSample, typename TOutput, typename TCoordRep>
void
JointHistogramParzenWindowsListSampleFunction<TListSample, TOutput, TCoordRep>::SetInputListSample(
const InputListSampleType * ptr)
{
this->m_ListSample = ptr;
this->m_JointHistogramImages.clear();
if (!this->m_ListSample)
{
return;
}
if (this->m_ListSample->Size() <= 1)
{
itkWarningMacro("The input list sample has <= 1 element."
<< "Function evaluations will be equal to 0.");
return;
}
typename InputListSampleType::ConstIterator It = this->m_ListSample->Begin();
InputMeasurementVectorType inputMeasurement = It.GetMeasurementVector();
unsigned int Dimension = inputMeasurement.Size();
if ((Dimension % 2) != 0)
{
itkWarningMacro("The input list should contain 2*N images where N > 0.");
return;
}
/**
* Find the min/max values to define the histogram domain
*/
Array<RealType> minValues(Dimension);
minValues.Fill(NumericTraits<RealType>::max());
Array<RealType> maxValues(Dimension);
maxValues.Fill(NumericTraits<RealType>::NonpositiveMin());
It = this->m_ListSample->Begin();
while (It != this->m_ListSample->End())
{
InputMeasurementVectorType inputMeasurement = It.GetMeasurementVector();
for (unsigned int d = 0; d < Dimension; d++)
{
if (inputMeasurement[d] < minValues[d])
{
minValues[d] = inputMeasurement[d];
}
if (inputMeasurement[d] > maxValues[d])
{
maxValues[d] = inputMeasurement[d];
}
}
++It;
}
It = this->m_ListSample->Begin();
while (It != this->m_ListSample->End())
{
InputMeasurementVectorType inputMeasurement = It.GetMeasurementVector();
/** joint-hist model for the eigenvalues */
unsigned int jhcount = 0;
for (unsigned int d = 0; d < Dimension; d = d + 2)
{
RealType value1 = (inputMeasurement[d] - minValues[d]) / (maxValues[d] - minValues[d]);
RealType value2 = (inputMeasurement[d + 1] - minValues[d + 1]) / (maxValues[d + 1] - minValues[d + 1]);
this->IncrementJointHistogram(value1, value2, jhcount);
jhcount++;
}
++It;
}
for (unsigned int d = 0; d < this->m_JointHistogramImages.size(); d++)
{
typedef DiscreteGaussianImageFilter<JointHistogramImageType, JointHistogramImageType> GaussianFilterType;
typename GaussianFilterType::Pointer gaussian = GaussianFilterType::New();
gaussian->SetInput(this->m_JointHistogramImages[d]);
gaussian->SetVariance(this->m_Sigma * this->m_Sigma);
gaussian->SetMaximumError(0.01);
gaussian->SetUseImageSpacing(false);
gaussian->Update();
typedef StatisticsImageFilter<JointHistogramImageType> StatsFilterType;
typename StatsFilterType::Pointer stats = StatsFilterType::New();
stats->SetInput(gaussian->GetOutput());
stats->Update();
typedef DivideByConstantImageFilter<JointHistogramImageType, RealType, JointHistogramImageType> DividerType;
typename DividerType::Pointer divider = DividerType::New();
divider->SetInput(gaussian->GetOutput());
divider->SetConstant(stats->GetSum());
divider->Update();
this->m_JointHistogramImages[d] = divider->GetOutput();
}
}
template <typename TListSample, typename TOutput, typename TCoordRep>
TOutput
JointHistogramParzenWindowsListSampleFunction<TListSample, TOutput, TCoordRep>::Evaluate(
const InputMeasurementVectorType & measurement) const
{
try
{
typedef BSplineInterpolateImageFunction<JointHistogramImageType> InterpolatorType;
RealType probability = 1.0;
for (unsigned int d = 0; d < this->m_JointHistogramImages.size(); d++)
{
typename JointHistogramImageType::PointType point;
point[0] = measurement[d];
typename InterpolatorType::Pointer interpolator = InterpolatorType::New();
interpolator->SetSplineOrder(3);
interpolator->SetInputImage(this->m_JointHistogramImages[d]);
if (interpolator->IsInsideBuffer(point))
{
probability *= interpolator->Evaluate(point);
}
else
{
return 0;
}
}
return probability;
}
catch (...)
{
return 0;
}
}
/**
* Standard "PrintSelf" method
*/
template <typename TListSample, typename TOutput, typename TCoordRep>
void
JointHistogramParzenWindowsListSampleFunction<TListSample, TOutput, TCoordRep>::PrintSelf(std::ostream & os,
Indent indent) const
{
os << indent << "Sigma: " << this->m_Sigma << std::endl;
os << indent << "Number of histogram bins: " << this->m_NumberOfJointHistogramBins << std::endl;
}
} // end of namespace Statistics
} // end of namespace ants
} // end of namespace itk
#endif