forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBufferArg.h
364 lines (311 loc) · 11.2 KB
/
BufferArg.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <glog/logging.h>
#include "TensorShape.h"
#include "TensorType.h"
#include "paddle/math/Matrix.h"
namespace paddle {
enum BufferType {
TENSOR_UNKNOWN = 0,
TENSOR_NORMAL = 1,
TENSOR_SEQUENCE_ID = 2,
TENSOR_SEQUENCE_DATA = 3,
TENSOR_SPARSE = 4
};
class BufferArg;
class SequenceArg;
class SparseMatrixArg;
/**
* \brief BufferArg used as the argument type of Function.
*
* The arguments of the Paddle Function have four Buffer types.
* 1. BufferArg for a dense Buffer of any dimension.
* 2. SequenceIdArg for a Buffer of sequence start positions.
* 3. SequenceArg for a Buffer of sequence data.
* 4. SparseMatrixArg for a Buffer of sparse matrix.
*
* Buffer shape
* For most buffers, the first dimension `shape()[0]` represents
* the size of the mini-batch.
*
* Buffer argType
* There is an ArgType property for the BufferArg used as Function Output.
* Whether the result of the Function calculation is assigned to the
* output Buffer or added to the output Buffer is determined by the
* argType_ property of the output BufferArg.
*/
// ArgType is only used by output BufferArg.
// For input argument, argType_ is ignored.
// For output argument, need to set the argType_ of the BufferArg.
enum ArgType {
UNSPECIFIED = 0,
ASSIGN_TO = 1,
ADD_TO = 2,
};
class BufferArg {
public:
void setArgType(ArgType argType) { argType_ = argType; }
ArgType getArgType() const { return argType_; }
public:
BufferArg(ValueType valueType,
const TensorShape& shape,
ArgType argType = UNSPECIFIED)
: buf_(nullptr), valueType_(valueType), shape_(shape), argType_(argType) {
bufferType_ = TENSOR_NORMAL;
}
BufferArg(void* buf,
ValueType valueType,
const TensorShape& shape,
ArgType argType = UNSPECIFIED)
: buf_(buf), valueType_(valueType), shape_(shape), argType_(argType) {
bufferType_ = TENSOR_NORMAL;
}
BufferArg(void* buf, ValueType valueType) : buf_(buf), valueType_(valueType) {
bufferType_ = TENSOR_NORMAL;
}
BufferArg(const Matrix& matrix, ArgType argType = UNSPECIFIED)
: buf_(
const_cast<void*>(reinterpret_cast<const void*>(matrix.getData()))),
valueType_(DataType<real>::value),
shape_(2),
argType_(argType) {
bufferType_ = TENSOR_NORMAL;
shape_.setDim(0, matrix.getHeight());
shape_.setDim(1, matrix.getWidth());
}
BufferArg(const Matrix& matrix,
const TensorShape& shape,
ArgType argType = UNSPECIFIED)
: buf_(
const_cast<void*>(reinterpret_cast<const void*>(matrix.getData()))),
valueType_(DataType<real>::value),
shape_(shape),
argType_(argType) {
bufferType_ = TENSOR_NORMAL;
CHECK_EQ(matrix.getElementCnt(), shape.getElements());
}
BufferArg(const Vector& vector, ArgType argType = UNSPECIFIED)
: buf_(
const_cast<void*>(reinterpret_cast<const void*>(vector.getData()))),
valueType_(DataType<real>::value),
shape_(1),
argType_(argType) {
bufferType_ = TENSOR_NORMAL;
shape_.setDim(0, vector.getSize());
}
BufferArg(const IVector& vector, ArgType argType = UNSPECIFIED)
: buf_(
const_cast<void*>(reinterpret_cast<const void*>(vector.getData()))),
valueType_(VALUE_TYPE_INT32),
shape_(1),
argType_(argType) {
bufferType_ = TENSOR_NORMAL;
shape_.setDim(0, vector.getSize());
}
template <DeviceType DType>
typename Tensor<real, DType>::Matrix matrix() const {
CHECK(buf_);
CHECK(valueType_ == DataType<real>::value);
// CHECK(deviceType_ == DType);
CHECK_EQ((size_t)2, shape_.ndims());
return typename Tensor<real, DType>::Matrix(
reinterpret_cast<real*>(buf_), shape_[0], shape_[1]);
}
template <typename VType, DeviceType DType>
typename Tensor<VType, DType>::Vector vector() const {
CHECK(buf_);
CHECK(valueType_ == DataType<VType>::value);
// CHECK(deviceType_ == DType);
CHECK_EQ((size_t)1, shape_.ndims());
return typename Tensor<VType, DType>::Vector(
shape_[0], reinterpret_cast<VType*>(buf_));
}
virtual ~BufferArg() {}
template <typename T>
T* data() const {
return reinterpret_cast<T*>(buf_);
}
void* data() const { return buf_; }
ValueType valueType() const { return valueType_; }
BufferType bufferType() const { return bufferType_; }
const TensorShape& shape() const { return shape_; }
bool isSparseArg() const { return TENSOR_SPARSE == bufferType_; }
bool isSequenceArg() const { return TENSOR_SEQUENCE_DATA == bufferType_; }
virtual size_t numElements() const { return shape_.getElements(); }
const SequenceArg& sequence() const;
const SparseMatrixArg& sparse() const;
protected:
void* buf_;
ValueType valueType_;
TensorShape shape_;
BufferType bufferType_{TENSOR_UNKNOWN};
ArgType argType_{UNSPECIFIED};
// TODO(tianbing), add deviceType_
// leading dimensions. The size is dims_.size()
// Dims lds_;
};
// sequence start positions in a mini-batch of sequences
// shape_.ndims() == 1
// valueType_ = int32
// if a < b then value_.buf_[a] < value_.buf_[b]
class SequenceIdArg : public BufferArg {
public:
SequenceIdArg(const TensorShape& shape, ArgType argType = UNSPECIFIED)
: BufferArg(VALUE_TYPE_INT32, shape, argType) {
bufferType_ = TENSOR_SEQUENCE_ID;
CHECK_EQ(shape_.ndims(), 1UL);
CHECK_GE(shape_[0], 1UL);
numSeqs_ = shape_[0] - 1;
}
SequenceIdArg(void* buf,
const TensorShape& shape,
ArgType argType = UNSPECIFIED)
: BufferArg(buf, VALUE_TYPE_INT32, shape, argType) {
bufferType_ = TENSOR_SEQUENCE_ID;
CHECK_EQ(shape_.ndims(), 1UL);
numSeqs_ = shape_[0] - 1;
}
SequenceIdArg(const IVector& vector) : BufferArg(vector) {
bufferType_ = TENSOR_SEQUENCE_ID;
numSeqs_ = shape_[0] - 1;
}
~SequenceIdArg() {}
size_t numSeqs() const { return numSeqs_; }
private:
size_t numSeqs_;
};
// sequences data
// For mini-batch calculate,
// one batch can contain more than one sequence of data.
// SequenceArg can be used to represent sequences that contain multiple
// unequal lengths.
class SequenceArg : public BufferArg {
public:
SequenceArg(ValueType valueType,
const TensorShape& shape,
ArgType argType = UNSPECIFIED)
: BufferArg(valueType, shape, argType),
startPositions_(TensorShape({shape[0]})) {
bufferType_ = TENSOR_SEQUENCE_DATA;
}
SequenceArg(void* buf,
ValueType valueType,
const TensorShape& shape,
const SequenceIdArg& startPositions,
ArgType argType = UNSPECIFIED)
: BufferArg(buf, valueType, shape, argType),
startPositions_(startPositions) {
bufferType_ = TENSOR_SEQUENCE_DATA;
}
SequenceArg(const Matrix& matrix,
const IVector& vector,
ArgType argType = UNSPECIFIED)
: BufferArg(matrix, argType), startPositions_(vector) {
bufferType_ = TENSOR_SEQUENCE_DATA;
}
~SequenceArg() {}
void* getIdBuf() const { return startPositions_.data(); }
size_t numSeqs() const { return startPositions_.numSeqs(); }
SequenceIdArg& getSequenceId() { return startPositions_; }
const SequenceIdArg& getSequenceId() const { return startPositions_; }
private:
SequenceIdArg startPositions_;
};
// sparse matrix
// valueType_ == float or double
// shape_.ndims() == 2
class SparseMatrixArg : public BufferArg {
public:
SparseMatrixArg(void* buf,
ValueType valueType,
const TensorShape& shape,
const BufferArg& row,
const BufferArg& col,
size_t nnz,
SparseFormat format,
SparseValueType type,
ArgType argType = UNSPECIFIED)
: BufferArg(buf, valueType, shape, argType),
row_(row),
col_(col),
nnz_(nnz),
format_(static_cast<SparseDataFormat>(format)),
type_(static_cast<SparseDataType>(type)) {
bufferType_ = TENSOR_SPARSE;
CHECK((valueType == VALUE_TYPE_FLOAT) || (valueType == VALUE_TYPE_DOUBLE));
CHECK_EQ(shape_.ndims(), 2UL);
CHECK_EQ(row_.shape().ndims(), 1UL);
CHECK_EQ(col_.shape().ndims(), 1UL);
if (format_ == T_SPARSE_CSR) {
CHECK_EQ(nnz, col.shape()[0]);
} else if (format_ == T_SPARSE_CSC) {
CHECK_EQ(nnz, row.shape()[0]);
}
}
SparseMatrixArg(ValueType valueType,
const TensorShape& shape,
size_t nnz,
SparseFormat format,
SparseValueType type,
ArgType argType = UNSPECIFIED)
: BufferArg(valueType, shape, argType),
row_(BufferArg(nullptr, VALUE_TYPE_INT32)),
col_(BufferArg(nullptr, VALUE_TYPE_INT32)),
nnz_(nnz),
format_(static_cast<SparseDataFormat>(format)),
type_(static_cast<SparseDataType>(type)) {
bufferType_ = TENSOR_SPARSE;
CHECK((valueType == VALUE_TYPE_FLOAT) || (valueType == VALUE_TYPE_DOUBLE));
CHECK_EQ(shape_.ndims(), 2UL);
/// len of row_ : height + 1 (CSR) or nnz (CSC), buf_ == nullptr
row_ = (format_ == T_SPARSE_CSR
? BufferArg(VALUE_TYPE_INT32, TensorShape{shape_[0] + 1})
: BufferArg(VALUE_TYPE_INT32, TensorShape{nnz}));
/// len of col_ : width + 1 (CSC) or nnz (CSR), buf_ == nullptr
col_ = (format_ == T_SPARSE_CSR
? BufferArg(VALUE_TYPE_INT32, TensorShape{nnz})
: BufferArg(VALUE_TYPE_INT32, TensorShape{shape_[1] + 1}));
}
SparseMatrixArg(const CpuSparseMatrix& sparse, ArgType argType = UNSPECIFIED);
SparseMatrixArg(const GpuSparseMatrix& sparse, ArgType argType = UNSPECIFIED);
template <DeviceType DType>
typename Tensor<real, DType>::SparseMatrix SparseMatrix() const {
CHECK(buf_);
CHECK(valueType_ == DataType<real>::value);
// CHECK(deviceType_ == DType);
CHECK_EQ(2UL, shape_.ndims());
return typename Tensor<real, DType>::SparseMatrix(
reinterpret_cast<real*>(buf_),
reinterpret_cast<int*>(row_.data()),
reinterpret_cast<int*>(col_.data()),
shape_[0],
shape_[1],
nnz_,
static_cast<SparseValueType>(type_),
static_cast<SparseFormat>(format_),
false);
}
~SparseMatrixArg() {}
void* getRowBuf() const { return row_.data(); }
void* getColBuf() const { return col_.data(); }
size_t nnz() const { return nnz_; }
size_t numElements() const override { return nnz_; }
SparseDataFormat dataFormat() const { return format_; }
SparseDataType dataType() const { return type_; }
private:
BufferArg row_;
BufferArg col_;
size_t nnz_;
SparseDataFormat format_;
SparseDataType type_;
};
} // namespace paddle