Skip to content

gaolipeng/M-UNet

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

M-UNet

This is a official implementation for our paper: "Simple Multiscale UNet for Change Detection With Heterogeneous Remote Sensing Images" has been published on IEEE GEOSCIENCE AND REMOTE SENSING LETTERS by Zhiyong Lv, Haitao Huang, Lipeng Gao, Jón Atli Benediktsson, Minghua Zhao and Cheng Shi.

Requirements

python=3.8 pytorch=1.9
opencv-python=4.6.0.66
scikit-image=0.18.1
scikit-learn=0.24.1

Usage

Train

  1. Load the train and test(val) data path
    python train.py

Test

  1. Load the model path
  2. Load the test data path
    python test.py

Citation

If you find our work useful for your research, please consider citing our paper:

@ARTICLE{9770788,
  author={Lv, Zhiyong and Huang, Haitao and Gao, Lipeng and Benediktsson, Jón Atli and Zhao, Minghua and Shi, Cheng},
  journal={IEEE Geoscience and Remote Sensing Letters}, 
  title={Simple Multiscale UNet for Change Detection With Heterogeneous Remote Sensing Images}, 
  year={2022},
  volume={19},
  number={},
  pages={1-5},
  doi={10.1109/LGRS.2022.3173300}}

Contact us

If you have any problme when running the code, please do not hesitate to contact us. Thanks.
E-mail: [email protected] Date: Mar 17, 2023

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%