nextpnr aims to be a vendor neutral, timing driven, FOSS FPGA place and route tool.
Currently nextpnr supports:
- Lattice iCE40 devices supported by Project IceStorm
- (experimental) Lattice ECP5 devices supported by Project Trellis
- (experimental) a "generic" back-end for user-defined architectures
We hope to see Xilinx 7 Series thanks to Project X-Ray and even more FPGA families supported in the future. We would love your help in developing this awesome new project!
Here is a screenshot of nextpnr for iCE40. Build instructions and getting started notes can be found below.
See also:
The following packages need to be installed for building nextpnr, independent of the selected architecture:
- CMake 3.3 or later
- Modern C++11 compiler (
clang-format
required for development) - Qt5 or later (
qt5-default
for Ubuntu 16.04) - Python 3.5 or later, including development libraries (
python3-dev
for Ubuntu)- on Windows make sure to install same version as supported by vcpkg
- Boost libraries (
libboost-dev libboost-filesystem-dev libboost-thread-dev libboost-program-options-dev libboost-python-dev libboost-dev
orlibboost-all-dev
for Ubuntu) - Eigen3 (
libeigen3-dev
for Ubuntu) is required to build the analytic placer - Latest git Yosys is required to synthesise the demo design
- For building on Windows with MSVC, usage of vcpkg is advised for dependency installation.
- For 32 bit builds:
vcpkg install boost-filesystem boost-program-options boost-thread boost-python qt5-base eigen3
- For 64 bit builds:
vcpkg install boost-filesystem:x64-windows boost-program-options:x64-windows boost-thread:x64-windows boost-python:x64-windows qt5-base:x64-windows eigen3:x64-windows
- A copy of Python that matches the version in vcpkg (currently Python 3.6.4). You can download the Embeddable Zip File and extract it. You may need to extract
python36.zip
within the embeddable zip file to a new directory called "Lib".
- For 32 bit builds:
- For building on macOS, brew utility is needed.
- Install all needed packages
brew install cmake python boost boost-python3 qt5
- Do not forget to add qt5 in path as well
echo 'export PATH="/usr/local/opt/qt/bin:$PATH"' >> ~/.bash_profile
- Install all needed packages
To build the iCE40 version of nextpnr, install icestorm with chipdbs installed in /usr/local/share/icebox
,
or another location, which should be passed as -DICEBOX_ROOT=/path/to/share/icebox
(ensure to point it to share/icebox
and not where the
icebox binaries are installed) to CMake.
Then build and install nextpnr-ice40
using the following commands:
cmake -DARCH=ice40 .
make -j$(nproc)
sudo make install
On Windows, you may specify paths explicitly:
cmake -DARCH=ice40 -DICEBOX_ROOT=C:/ProgramData/icestorm/share/icebox -DCMAKE_TOOLCHAIN_FILE=C:/vcpkg/scripts/buildsystems/vcpkg.cmake -DVCPKG_TARGET_TRIPLET=x64-windows -G "Visual Studio 15 2017 Win64" -DPYTHON_EXECUTABLE=C:/Python364/python.exe -DPYTHON_LIBRARY=C:/vcpkg/packages/python3_x64-windows/lib/python36.lib -DPYTHON_INCLUDE_DIR=C:/vcpkg/packages/python3_x64-windows/include/python3.6
cmake --build . --config Release
A simple example that runs on the iCEstick dev board can be found in ice40/examples/blinky/blinky.*
.
Usage example:
cd ice40/examples/blinky
yosys -p 'synth_ice40 -top blinky -json blinky.json' blinky.v # synthesize into blinky.json
nextpnr-ice40 --hx1k --json blinky.json --pcf blinky.pcf --asc blinky.asc # run place and route
icepack blinky.asc blinky.bin # generate binary bitstream file
iceprog blinky.bin # upload design to iCEstick
Running nextpnr in GUI mode:
nextpnr-ice40 --json blinky.json --pcf blinky.pcf --asc blinky.asc --gui
(Use the toolbar buttons or the Python command console to perform actions such as pack, place, route, and write output files.)
For ECP5 support, you must download Project Trellis, then follow its instructions to download the latest database and build libtrellis.
cmake -DARCH=ecp5 -DTRELLIS_ROOT=/path/to/prjtrellis .
make -j$(nproc)
sudo make install
-
For an ECP5 blinky on the 45k ULX3S board, first synthesise using
yosys blinky.ys
inecp5/synth
. -
Then run ECP5 place-and route using
./nextpnr-ecp5 --json ecp5/synth/blinky.json --basecfg ecp5/synth/ulx3s_empty.config --textcfg ecp5/synth/ulx3s_out.config
-
Create a bitstream using
ecppack ulx3s_out.config ulx3s.bit
-
Note that
ulx3s_empty.config
contains fixed/unknown bits to be copied to the output bitstream -
More examples of the ECP5 flow for a range of boards can be found in the Project Trellis Examples.
The generic target allows running placement and routing for arbitrary custom architectures.
cmake -DARCH=generic .
make -j$(nproc)
sudo make install
TBD: Getting started example for generic target.
Use cmake -D
options to specify which version of nextpnr you want to build.
Use -DARCH=...
to set the architecture. It is a semicolon separated list.
Use cmake . -DARCH=all
to build all supported architectures.
The following runs a debug build of the iCE40 architecture without GUI, without Python support, without the HeAP analytic placer and only HX1K support:
cmake -DARCH=ice40 -DCMAKE_BUILD_TYPE=Debug -DBUILD_PYTHON=OFF -DBUILD_GUI=OFF -DBUILD_HEAP=OFF -DICE40_HX1K_ONLY=1 .
make -j$(nproc)
To make static build relase for iCE40 architecture use the following:
cmake -DARCH=ice40 -DBUILD_PYTHON=OFF -DBUILD_GUI=OFF -DSTATIC_BUILD=ON .
make -j$(nproc)
The HeAP placer's solver can optionally use OpenMP for a speedup on very large designs. Enable this by passing
-DUSE_OPENMP=yes
to cmake (compiler support may vary).
You can change the location where nextpnr will be installed (this will usually default to /usr/local
) by using
-DCMAKE_INSTALL_PREFIX=/install/prefix
.
- All code is formatted using
clang-format
according to the style rules in.clang-format
(LLVM based with increased indent widths and brace wraps after classes). - To automatically format all source code, run
make clangformat
. - See the wiki for additional documentation on the architecture API.
- To build test binaries as well, use
-DBUILD_TESTS=ON
and aftermake
runmake tests
to run them, or you can run separate binaries. - To use code sanitizers use the
cmake
options:-DSANITIZE_ADDRESS=ON
-DSANITIZE_MEMORY=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++
-DSANITIZE_THREAD=ON
-DSANITIZE_UNDEFINED=ON
- Running valgrind example
valgrind --leak-check=yes --tool=memcheck ./nextpnr-ice40 --json ice40/blinky.json
- Running tests with code coverage use
-DBUILD_TESTS=ON -DCOVERAGE
and aftermake
runmake ice40-coverage
- After that open
ice40-coverage/index.html
in your browser to view the coverage report - Note that
lcov
is needed in order to generate reports