forked from ElementsProject/lightning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhandshake.c
1011 lines (887 loc) · 30.2 KB
/
handshake.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "config.h"
#include <assert.h>
#include <bitcoin/pubkey.h>
#include <ccan/crypto/hkdf_sha256/hkdf_sha256.h>
#include <ccan/endian/endian.h>
#include <ccan/io/io.h>
#include <ccan/mem/mem.h>
#include <common/crypto_state.h>
#include <common/ecdh.h>
#include <common/status.h>
#include <common/type_to_string.h>
#include <common/utils.h>
#include <common/wireaddr.h>
#include <connectd/handshake.h>
#include <errno.h>
#include <secp256k1_ecdh.h>
#include <sodium/crypto_aead_chacha20poly1305.h>
#include <sodium/randombytes.h>
#ifndef SUPERVERBOSE
#define SUPERVERBOSE(...)
#endif
enum bolt8_side {
INITIATOR,
RESPONDER
};
/* BOLT #8:
*
* Act One is sent from initiator to responder. During Act One, the
* initiator attempts to satisfy an implicit challenge by the responder. To
* complete this challenge, the initiator must know the static public key of
* the responder.
*/
struct act_one {
u8 v;
u8 pubkey[PUBKEY_CMPR_LEN];
u8 tag[crypto_aead_chacha20poly1305_ietf_ABYTES];
};
/* BOLT #8: The handshake message is _exactly_ 50 bytes */
#define ACT_ONE_SIZE 50 /* ARM's stupid ABI adds padding. */
static inline void check_act_one(const struct act_one *act1)
{
/* BOLT #8:
*
* : 1 byte for the handshake version, 33 bytes for the compressed
* ephemeral public key of the initiator, and 16 bytes for the
* `poly1305` tag.
*/
BUILD_ASSERT(sizeof(act1->v) == 1);
BUILD_ASSERT(sizeof(act1->pubkey) == 33);
BUILD_ASSERT(sizeof(act1->tag) == 16);
}
/* BOLT #8:
*
* Act Two is sent from the responder to the initiator. Act Two will
* _only_ take place if Act One was successful. Act One was successful if
* the responder was able to properly decrypt and check the MAC of the tag
* sent at the end of Act One.
*/
struct act_two {
u8 v;
u8 pubkey[PUBKEY_CMPR_LEN];
u8 tag[crypto_aead_chacha20poly1305_ietf_ABYTES];
};
/* BOLT #8: The handshake is _exactly_ 50 bytes: */
#define ACT_TWO_SIZE 50 /* ARM's stupid ABI adds padding. */
static inline void check_act_two(const struct act_two *act2)
{
/* BOLT #8:
* 1 byte for the handshake version,
* 33 bytes for the compressed ephemeral public key of the initiator, and
* 16 bytes for the `poly1305` tag.
*/
BUILD_ASSERT(sizeof(act2->v) == 1);
BUILD_ASSERT(sizeof(act2->pubkey) == 33);
BUILD_ASSERT(sizeof(act2->tag) == 16);
}
/* BOLT #8:
*
* Act Three is the final phase in the authenticated key agreement described
* in this section. This act is sent from the initiator to the responder as a
* concluding step. Act Three is executed _if and only if_ Act Two was
* successful. During Act Three, the initiator transports its static public
* key to the responder encrypted with _strong_ forward secrecy, using the
* accumulated `HKDF` derived secret key at this point of the handshake.
*/
struct act_three {
u8 v;
u8 ciphertext[PUBKEY_CMPR_LEN + crypto_aead_chacha20poly1305_ietf_ABYTES];
u8 tag[crypto_aead_chacha20poly1305_ietf_ABYTES];
};
/* BOLT #8: The handshake is _exactly_ 66 bytes */
#define ACT_THREE_SIZE 66 /* ARM's stupid ABI adds padding. */
static inline void check_act_three(const struct act_three *act3)
{
/* BOLT #8:
*
* 1 byte for the handshake version, 33 bytes for the
* compressed ephemeral public key of the initiator, and 16
* bytes for the `poly1305` tag.
*/
BUILD_ASSERT(sizeof(act3->v) == 1);
BUILD_ASSERT(sizeof(act3->ciphertext) == 33 + 16);
BUILD_ASSERT(sizeof(act3->tag) == 16);
}
/* BOLT #8:
*
* * `generateKey()`: generates and returns a fresh `secp256k1` keypair
* * Where the object returned by `generateKey` has two attributes:
* * `.pub`, which returns an abstract object representing the
* public key
* * `.priv`, which represents the private key used to generate the
* public key
*/
struct keypair {
struct pubkey pub;
struct privkey priv;
};
/* BOLT #8:
*
* Throughout the handshake process, each side maintains these variables:
*
* * `ck`: the **chaining key**. This value is the accumulated hash of all
* previous ECDH outputs. At the end of the handshake, `ck` is used to derive
* the encryption keys for Lightning messages.
*
* * `h`: the **handshake hash**. This value is the accumulated hash of _all_
* handshake data that has been sent and received so far during the handshake
* process.
*
* * `temp_k1`, `temp_k2`, `temp_k3`: the **intermediate keys**. These are used to
* encrypt and decrypt the zero-length AEAD payloads at the end of each handshake
* message.
*
* * `e`: a party's **ephemeral keypair**. For each session, a node MUST generate a
* new ephemeral key with strong cryptographic randomness.
*
* * `s`: a party's **static keypair** (`ls` for local, `rs` for remote)
*/
struct handshake {
struct secret ck;
struct secret temp_k;
struct sha256 h;
struct keypair e;
struct secret *ss;
/* Used between the Acts */
struct pubkey re;
struct act_one act1;
struct act_two act2;
struct act_three act3;
/* Where is connection from/to */
struct wireaddr_internal addr;
/* Who we are */
struct pubkey my_id;
/* Who they are: set already if we're initiator. */
struct pubkey their_id;
/* Are we initiator or responder. */
enum bolt8_side side;
/* Timeout timer if we take too long. */
struct oneshot *timeout;
/* Function to call once handshake complete. */
struct io_plan *(*cb)(struct io_conn *conn,
const struct pubkey *their_id,
const struct wireaddr_internal *wireaddr,
struct crypto_state *cs,
struct oneshot *timeout,
void *cbarg);
void *cbarg;
};
static struct keypair generate_key(void)
{
struct keypair k;
do {
randombytes_buf(k.priv.secret.data, sizeof(k.priv.secret.data));
} while (!secp256k1_ec_pubkey_create(secp256k1_ctx,
&k.pub.pubkey, k.priv.secret.data));
return k;
}
/* h = SHA-256(h || data) */
static void sha_mix_in(struct sha256 *h, const void *data, size_t len)
{
struct sha256_ctx shactx;
sha256_init(&shactx);
sha256_update(&shactx, h, sizeof(*h));
sha256_update(&shactx, data, len);
sha256_done(&shactx, h);
}
/* h = SHA-256(h || pub.serializeCompressed()) */
static void sha_mix_in_key(struct sha256 *h, const struct pubkey *key)
{
u8 der[PUBKEY_CMPR_LEN];
size_t len = sizeof(der);
secp256k1_ec_pubkey_serialize(secp256k1_ctx, der, &len, &key->pubkey,
SECP256K1_EC_COMPRESSED);
assert(len == sizeof(der));
sha_mix_in(h, der, sizeof(der));
}
/* out1, out2 = HKDF(in1, in2)` */
static void hkdf_two_keys(struct secret *out1, struct secret *out2,
const struct secret *in1,
const void *in2, size_t in2_size)
{
/* BOLT #8:
*
* * `HKDF(salt,ikm)`: a function defined in `RFC 5869`<sup>[3](#reference-3)</sup>,
* evaluated with a zero-length `info` field
* * All invocations of `HKDF` implicitly return 64 bytes
* of cryptographic randomness using the extract-and-expand
* component of the `HKDF`.
*/
struct secret okm[2];
SUPERVERBOSE("# HKDF(0x%s,%s%s)",
tal_hexstr(tmpctx, in1, sizeof(*in1)),
in2_size ? "0x" : "zero",
tal_hexstr(tmpctx, in2, in2_size));
BUILD_ASSERT(sizeof(okm) == 64);
hkdf_sha256(okm, sizeof(okm), in1, sizeof(*in1), in2, in2_size,
NULL, 0);
*out1 = okm[0];
*out2 = okm[1];
}
static void le64_nonce(unsigned char *npub, u64 nonce)
{
/* BOLT #8:
*
* ...with nonce `n` encoded as 32 zero bits, followed by a
* *little-endian* 64-bit value. Note: this follows the Noise
* Protocol convention, rather than our normal endian
*/
le64 le_nonce = cpu_to_le64(nonce);
const size_t zerolen = crypto_aead_chacha20poly1305_ietf_NPUBBYTES - sizeof(le_nonce);
BUILD_ASSERT(crypto_aead_chacha20poly1305_ietf_NPUBBYTES >= sizeof(le_nonce));
/* First part is 0, followed by nonce. */
memset(npub, 0, zerolen);
memcpy(npub + zerolen, &le_nonce, sizeof(le_nonce));
}
/* BOLT #8:
* * `encryptWithAD(k, n, ad, plaintext)`: outputs `encrypt(k, n, ad,
* plaintext)`
* * Where `encrypt` is an evaluation of `ChaCha20-Poly1305` (IETF
* variant) with the passed arguments, with nonce `n`
*/
static void encrypt_ad(const struct secret *k, u64 nonce,
const void *additional_data, size_t additional_data_len,
const void *plaintext, size_t plaintext_len,
void *output, size_t outputlen)
{
unsigned char npub[crypto_aead_chacha20poly1305_ietf_NPUBBYTES];
unsigned long long clen;
int ret;
assert(outputlen == plaintext_len + crypto_aead_chacha20poly1305_ietf_ABYTES);
le64_nonce(npub, nonce);
BUILD_ASSERT(sizeof(*k) == crypto_aead_chacha20poly1305_ietf_KEYBYTES);
SUPERVERBOSE("# encryptWithAD(0x%s, 0x%s, 0x%s, %s%s)",
tal_hexstr(tmpctx, k, sizeof(*k)),
tal_hexstr(tmpctx, npub, sizeof(npub)),
tal_hexstr(tmpctx, additional_data, additional_data_len),
plaintext_len ? "0x" : "<empty>",
tal_hexstr(tmpctx, plaintext, plaintext_len));
ret = crypto_aead_chacha20poly1305_ietf_encrypt(output, &clen,
memcheck(plaintext, plaintext_len),
plaintext_len,
additional_data, additional_data_len,
NULL, npub, k->data);
assert(ret == 0);
assert(clen == plaintext_len + crypto_aead_chacha20poly1305_ietf_ABYTES);
}
/* BOLT #8:
* * `decryptWithAD(k, n, ad, ciphertext)`: outputs `decrypt(k, n, ad,
* ciphertext)`
* * Where `decrypt` is an evaluation of `ChaCha20-Poly1305` (IETF
* variant) with the passed arguments, with nonce `n`
*/
static bool decrypt(const struct secret *k, u64 nonce,
const void *additional_data, size_t additional_data_len,
const void *ciphertext, size_t ciphertext_len,
void *output, size_t outputlen)
{
unsigned char npub[crypto_aead_chacha20poly1305_ietf_NPUBBYTES];
unsigned long long mlen;
assert(outputlen == ciphertext_len - crypto_aead_chacha20poly1305_ietf_ABYTES);
le64_nonce(npub, nonce);
BUILD_ASSERT(sizeof(*k) == crypto_aead_chacha20poly1305_ietf_KEYBYTES);
SUPERVERBOSE("# decryptWithAD(0x%s, 0x%s, 0x%s, 0x%s)",
tal_hexstr(tmpctx, k, sizeof(*k)),
tal_hexstr(tmpctx, npub, sizeof(npub)),
tal_hexstr(tmpctx, additional_data, additional_data_len),
tal_hexstr(tmpctx, ciphertext, ciphertext_len));
if (crypto_aead_chacha20poly1305_ietf_decrypt(output, &mlen, NULL,
memcheck(ciphertext, ciphertext_len),
ciphertext_len,
additional_data, additional_data_len,
npub, k->data) != 0)
return false;
assert(mlen == ciphertext_len - crypto_aead_chacha20poly1305_ietf_ABYTES);
return true;
}
static struct io_plan *handshake_failed_(struct io_conn *conn,
struct handshake *h,
const char *function, int line)
{
status_debug("%s: handshake failed %s:%u",
h->side == RESPONDER ? "Responder" : "Initiator",
function, line);
errno = EPROTO;
return io_close(conn);
}
#define handshake_failed(conn, h) \
handshake_failed_((conn), (h), __func__, __LINE__)
static struct io_plan *handshake_succeeded(struct io_conn *conn,
struct handshake *h)
{
struct crypto_state cs;
struct io_plan *(*cb)(struct io_conn *conn,
const struct pubkey *their_id,
const struct wireaddr_internal *addr,
struct crypto_state *cs,
struct oneshot *timeout,
void *cbarg);
void *cbarg;
struct pubkey their_id;
struct wireaddr_internal addr;
struct oneshot *timeout;
/* BOLT #8:
*
* 9. `rk, sk = HKDF(ck, zero)`
* * where `zero` is a zero-length plaintext, `rk` is the key to
* be used by the responder to decrypt the messages sent by the
* initiator, and `sk` is the key to be used by the responder
* to encrypt messages to the initiator
*
* * The final encryption keys, to be used for sending and
* receiving messages for the duration of the session, are
* generated.
*/
if (h->side == RESPONDER)
hkdf_two_keys(&cs.rk, &cs.sk, &h->ck, NULL, 0);
else
hkdf_two_keys(&cs.sk, &cs.rk, &h->ck, NULL, 0);
cs.rn = cs.sn = 0;
cs.r_ck = cs.s_ck = h->ck;
cb = h->cb;
cbarg = h->cbarg;
their_id = h->their_id;
addr = h->addr;
timeout = h->timeout;
tal_free(h);
return cb(conn, &their_id, &addr, &cs, timeout, cbarg);
}
static struct handshake *new_handshake(const tal_t *ctx,
const struct pubkey *responder_id)
{
struct handshake *handshake = tal(ctx, struct handshake);
/* BOLT #8:
*
* Before the start of Act One, both sides initialize their
* per-sessions state as follows:
*
* 1. `h = SHA-256(protocolName)`
* * where `protocolName = "Noise_XK_secp256k1_ChaChaPoly_SHA256"`
* encoded as an ASCII string
*/
sha256(&handshake->h, "Noise_XK_secp256k1_ChaChaPoly_SHA256",
strlen("Noise_XK_secp256k1_ChaChaPoly_SHA256"));
/* BOLT #8:
*
* 2. `ck = h`
*/
BUILD_ASSERT(sizeof(handshake->h) == sizeof(handshake->ck));
memcpy(&handshake->ck, &handshake->h, sizeof(handshake->ck));
SUPERVERBOSE("# ck=%s",
tal_hexstr(tmpctx, &handshake->ck, sizeof(handshake->ck)));
/* BOLT #8:
*
* 3. `h = SHA-256(h || prologue)`
* * where `prologue` is the ASCII string: `lightning`
*/
sha_mix_in(&handshake->h, "lightning", strlen("lightning"));
/* BOLT #8:
*
* As a concluding step, both sides mix the responder's public key
* into the handshake digest:
*
* * The initiating node mixes in the responding node's static public
* key serialized in Bitcoin's compressed format:
* * `h = SHA-256(h || rs.pub.serializeCompressed())`
*
* * The responding node mixes in their local static public key
* serialized in Bitcoin's compressed format:
* * `h = SHA-256(h || ls.pub.serializeCompressed())`
*/
sha_mix_in_key(&handshake->h, responder_id);
SUPERVERBOSE("# h=%s",
tal_hexstr(tmpctx, &handshake->h, sizeof(handshake->h)));
return handshake;
}
static struct io_plan *act_three_initiator(struct io_conn *conn,
struct handshake *h)
{
u8 spub[PUBKEY_CMPR_LEN];
size_t len = sizeof(spub);
SUPERVERBOSE("Initiator: Act 3");
/* BOLT #8:
* 1. `c = encryptWithAD(temp_k2, 1, h, s.pub.serializeCompressed())`
* * where `s` is the static public key of the initiator
*/
secp256k1_ec_pubkey_serialize(secp256k1_ctx, spub, &len,
&h->my_id.pubkey,
SECP256K1_EC_COMPRESSED);
encrypt_ad(&h->temp_k, 1, &h->h, sizeof(h->h), spub, sizeof(spub),
h->act3.ciphertext, sizeof(h->act3.ciphertext));
SUPERVERBOSE("# c=0x%s",
tal_hexstr(tmpctx,
h->act3.ciphertext, sizeof(h->act3.ciphertext)));
/* BOLT #8:
* 2. `h = SHA-256(h || c)`
*/
sha_mix_in(&h->h, h->act3.ciphertext, sizeof(h->act3.ciphertext));
SUPERVERBOSE("# h=0x%s", tal_hexstr(tmpctx, &h->h, sizeof(h->h)));
/* BOLT #8:
*
* 3. `se = ECDH(s.priv, re)`
* * where `re` is the ephemeral public key of the responder
*/
h->ss = tal(h, struct secret);
ecdh(&h->re, h->ss);
SUPERVERBOSE("# ss=0x%s", tal_hexstr(tmpctx, h->ss, sizeof(*h->ss)));
/* BOLT #8:
*
* 4. `ck, temp_k3 = HKDF(ck, se)`
* * The final intermediate shared secret is mixed into the running chaining key.
*/
hkdf_two_keys(&h->ck, &h->temp_k, &h->ck, h->ss, sizeof(*h->ss));
SUPERVERBOSE("# ck,temp_k3=0x%s,0x%s",
tal_hexstr(tmpctx, &h->ck, sizeof(h->ck)),
tal_hexstr(tmpctx, &h->temp_k, sizeof(h->temp_k)));
/* BOLT #8:
*
* 5. `t = encryptWithAD(temp_k3, 0, h, zero)`
* * where `zero` is a zero-length plaintext
*
*/
encrypt_ad(&h->temp_k, 0, &h->h, sizeof(h->h), NULL, 0,
h->act3.tag, sizeof(h->act3.tag));
SUPERVERBOSE("# t=0x%s",
tal_hexstr(tmpctx, h->act3.tag, sizeof(h->act3.tag)));
/* BOLT #8:
*
* 8. Send `m = 0 || c || t` over the network buffer.
*
*/
h->act3.v = 0;
SUPERVERBOSE("output: 0x%s", tal_hexstr(tmpctx, &h->act3, ACT_THREE_SIZE));
return io_write(conn, &h->act3, ACT_THREE_SIZE, handshake_succeeded, h);
}
static struct io_plan *act_two_initiator2(struct io_conn *conn,
struct handshake *h)
{
SUPERVERBOSE("input: 0x%s", tal_hexstr(tmpctx, &h->act2, ACT_TWO_SIZE));
/* BOLT #8:
*
* 3. If `v` is an unrecognized handshake version, then the responder
* MUST abort the connection attempt.
*/
if (h->act2.v != 0)
return handshake_failed(conn, h);
/* BOLT #8:
*
* * The raw bytes of the remote party's ephemeral public key
* (`re`) are to be deserialized into a point on the curve using
* affine coordinates as encoded by the key's serialized
* composed format.
*/
if (secp256k1_ec_pubkey_parse(secp256k1_ctx, &h->re.pubkey,
h->act2.pubkey, sizeof(h->act2.pubkey)) != 1)
return handshake_failed(conn, h);
SUPERVERBOSE("# re=0x%s", type_to_string(tmpctx, struct pubkey, &h->re));
/* BOLT #8:
*
* 4. `h = SHA-256(h || re.serializeCompressed())`
*/
sha_mix_in_key(&h->h, &h->re);
SUPERVERBOSE("# h=0x%s", tal_hexstr(tmpctx, &h->h, sizeof(h->h)));
/* BOLT #8:
*
* 5. `es = ECDH(s.priv, re)`
*/
if (!secp256k1_ecdh(secp256k1_ctx, h->ss->data, &h->re.pubkey,
h->e.priv.secret.data, NULL, NULL))
return handshake_failed(conn, h);
SUPERVERBOSE("# ss=0x%s", tal_hexstr(tmpctx, h->ss, sizeof(*h->ss)));
/* BOLT #8:
*
* 6. `ck, temp_k2 = HKDF(ck, ee)`
* * A new temporary encryption key is generated, which is
* used to generate the authenticating MAC.
*/
hkdf_two_keys(&h->ck, &h->temp_k, &h->ck, h->ss, sizeof(*h->ss));
SUPERVERBOSE("# ck,temp_k2=0x%s,0x%s",
tal_hexstr(tmpctx, &h->ck, sizeof(h->ck)),
tal_hexstr(tmpctx, &h->temp_k, sizeof(h->temp_k)));
/* BOLT #8:
*
* 7. `p = decryptWithAD(temp_k2, 0, h, c)`
* * If the MAC check in this operation fails, then the initiator
* MUST terminate the connection without any further messages.
*/
if (!decrypt(&h->temp_k, 0, &h->h, sizeof(h->h),
h->act2.tag, sizeof(h->act2.tag), NULL, 0))
return handshake_failed(conn, h);
/* BOLT #8:
*
* 8. `h = SHA-256(h || c)`
* * The received ciphertext is mixed into the handshake digest.
* This step serves to ensure the payload wasn't modified by a
* MITM.
*/
sha_mix_in(&h->h, h->act2.tag, sizeof(h->act2.tag));
SUPERVERBOSE("# h=0x%s", tal_hexstr(tmpctx, &h->h, sizeof(h->h)));
return act_three_initiator(conn, h);
}
static struct io_plan *act_two_initiator(struct io_conn *conn,
struct handshake *h)
{
SUPERVERBOSE("Initiator: Act 2");
/* BOLT #8:
*
* 1. Read _exactly_ 50 bytes from the network buffer.
*
* 2. Parse the read message (`m`) into `v`, `re`, and `c`:
* * where `v` is the _first_ byte of `m`, `re` is the next 33
* bytes of `m`, and `c` is the last 16 bytes of `m`.
*/
return io_read(conn, &h->act2, ACT_TWO_SIZE, act_two_initiator2, h);
}
static struct io_plan *act_one_initiator(struct io_conn *conn,
struct handshake *h)
{
size_t len;
SUPERVERBOSE("Initiator: Act 1");
/* BOLT #8:
*
* **Sender Actions:**
*
* 1. `e = generateKey()`
*/
h->e = generate_key();
SUPERVERBOSE("e.priv: 0x%s",
tal_hexstr(tmpctx, &h->e.priv, sizeof(h->e.priv)));
SUPERVERBOSE("e.pub: 0x%s",
type_to_string(tmpctx, struct pubkey, &h->e.pub));
/* BOLT #8:
*
* 2. `h = SHA-256(h || e.pub.serializeCompressed())`
* * The newly generated ephemeral key is accumulated into the
* running handshake digest.
*/
sha_mix_in_key(&h->h, &h->e.pub);
SUPERVERBOSE("# h=0x%s", tal_hexstr(tmpctx, &h->h, sizeof(h->h)));
/* BOLT #8:
*
* 3. `es = ECDH(e.priv, rs)`
* * The initiator performs an ECDH between its newly generated ephemeral
* key and the remote node's static public key.
*/
h->ss = tal(h, struct secret);
if (!secp256k1_ecdh(secp256k1_ctx, h->ss->data,
&h->their_id.pubkey, h->e.priv.secret.data,
NULL, NULL))
return handshake_failed(conn, h);
SUPERVERBOSE("# ss=0x%s", tal_hexstr(tmpctx, h->ss->data, sizeof(h->ss->data)));
/* BOLT #8:
*
* 4. `ck, temp_k1 = HKDF(ck, es)`
* * A new temporary encryption key is generated, which is
* used to generate the authenticating MAC.
*/
hkdf_two_keys(&h->ck, &h->temp_k, &h->ck, h->ss, sizeof(*h->ss));
SUPERVERBOSE("# ck,temp_k1=0x%s,0x%s",
tal_hexstr(tmpctx, &h->ck, sizeof(h->ck)),
tal_hexstr(tmpctx, &h->temp_k, sizeof(h->temp_k)));
/* BOLT #8:
* 5. `c = encryptWithAD(temp_k1, 0, h, zero)`
* * where `zero` is a zero-length plaintext
*/
encrypt_ad(&h->temp_k, 0, &h->h, sizeof(h->h), NULL, 0,
h->act1.tag, sizeof(h->act1.tag));
SUPERVERBOSE("# c=%s",
tal_hexstr(tmpctx, h->act1.tag, sizeof(h->act1.tag)));
/* BOLT #8:
* 6. `h = SHA-256(h || c)`
* * Finally, the generated ciphertext is accumulated into the
* authenticating handshake digest.
*/
sha_mix_in(&h->h, h->act1.tag, sizeof(h->act1.tag));
SUPERVERBOSE("# h=0x%s", tal_hexstr(tmpctx, &h->h, sizeof(h->h)));
/* BOLT #8:
*
* 7. Send `m = 0 || e.pub.serializeCompressed() || c` to the responder over the network buffer.
*/
h->act1.v = 0;
len = sizeof(h->act1.pubkey);
secp256k1_ec_pubkey_serialize(secp256k1_ctx, h->act1.pubkey, &len,
&h->e.pub.pubkey,
SECP256K1_EC_COMPRESSED);
SUPERVERBOSE("output: 0x%s", tal_hexstr(tmpctx, &h->act1, ACT_ONE_SIZE));
check_act_one(&h->act1);
return io_write(conn, &h->act1, ACT_ONE_SIZE, act_two_initiator, h);
}
static struct io_plan *act_three_responder2(struct io_conn *conn,
struct handshake *h)
{
u8 der[PUBKEY_CMPR_LEN];
SUPERVERBOSE("input: 0x%s", tal_hexstr(tmpctx, &h->act3, ACT_THREE_SIZE));
/* BOLT #8:
*
* 2. Parse the read message (`m`) into `v`, `c`, and `t`:
* * where `v` is the _first_ byte of `m`, `c` is the next 49
* bytes of `m`, and `t` is the last 16 bytes of `m`
*/
/* BOLT #8:
*
* 3. If `v` is an unrecognized handshake version, then the responder
* MUST abort the connection attempt.
*/
if (h->act3.v != 0)
return handshake_failed(conn, h);
/* BOLT #8:
*
* 4. `rs = decryptWithAD(temp_k2, 1, h, c)`
* * At this point, the responder has recovered the static public
* key of the initiator.
*/
if (!decrypt(&h->temp_k, 1, &h->h, sizeof(h->h),
h->act3.ciphertext, sizeof(h->act3.ciphertext),
der, sizeof(der)))
return handshake_failed(conn, h);
SUPERVERBOSE("# rs=0x%s", tal_hexstr(tmpctx, der, sizeof(der)));
if (secp256k1_ec_pubkey_parse(secp256k1_ctx, &h->their_id.pubkey,
der, sizeof(der)) != 1)
return handshake_failed(conn, h);
/* BOLT #8:
*
* 5. `h = SHA-256(h || c)`
*
*/
sha_mix_in(&h->h, h->act3.ciphertext, sizeof(h->act3.ciphertext));
SUPERVERBOSE("# h=0x%s", tal_hexstr(tmpctx, &h->h, sizeof(h->h)));
/* BOLT #8:
*
* 6. `se = ECDH(e.priv, rs)`
* * where `e` is the responder's original ephemeral key
*/
if (!secp256k1_ecdh(secp256k1_ctx, h->ss->data, &h->their_id.pubkey,
h->e.priv.secret.data, NULL, NULL))
return handshake_failed(conn, h);
SUPERVERBOSE("# ss=0x%s", tal_hexstr(tmpctx, h->ss, sizeof(*h->ss)));
/* BOLT #8:
* 7. `ck, temp_k3 = HKDF(ck, se)`
*/
hkdf_two_keys(&h->ck, &h->temp_k, &h->ck, h->ss, sizeof(*h->ss));
SUPERVERBOSE("# ck,temp_k3=0x%s,0x%s",
tal_hexstr(tmpctx, &h->ck, sizeof(h->ck)),
tal_hexstr(tmpctx, &h->temp_k, sizeof(h->temp_k)));
/* BOLT #8:
* 8. `p = decryptWithAD(temp_k3, 0, h, t)`
* * If the MAC check in this operation fails, then the responder
* MUST terminate the connection without any further messages.
*
*/
if (!decrypt(&h->temp_k, 0, &h->h, sizeof(h->h),
h->act3.tag, sizeof(h->act3.tag), NULL, 0))
return handshake_failed(conn, h);
check_act_three(&h->act3);
return handshake_succeeded(conn, h);
}
static struct io_plan *act_three_responder(struct io_conn *conn,
struct handshake *h)
{
SUPERVERBOSE("Responder: Act 3");
/* BOLT #8:
*
* **Receiver Actions:**
*
* 1. Read _exactly_ 66 bytes from the network buffer.
*/
return io_read(conn, &h->act3, ACT_THREE_SIZE, act_three_responder2, h);
}
static struct io_plan *act_two_responder(struct io_conn *conn,
struct handshake *h)
{
size_t len;
SUPERVERBOSE("Responder: Act 2");
/* BOLT #8:
*
* **Sender Actions:**
*
* 1. `e = generateKey()`
*/
h->e = generate_key();
SUPERVERBOSE("# e.pub=0x%s e.priv=0x%s",
type_to_string(tmpctx, struct pubkey, &h->e.pub),
tal_hexstr(tmpctx, &h->e.priv, sizeof(h->e.priv)));
/* BOLT #8:
*
* 2. `h = SHA-256(h || e.pub.serializeCompressed())`
* * The newly generated ephemeral key is accumulated into the
* running handshake digest.
*/
sha_mix_in_key(&h->h, &h->e.pub);
SUPERVERBOSE("# h=0x%s", tal_hexstr(tmpctx, &h->h, sizeof(h->h)));
/* BOLT #8:
*
* 3. `ee = ECDH(e.priv, re)`
* * where `re` is the ephemeral key of the initiator, which was received
* during Act One
*/
if (!secp256k1_ecdh(secp256k1_ctx, h->ss->data, &h->re.pubkey,
h->e.priv.secret.data, NULL, NULL))
return handshake_failed(conn, h);
SUPERVERBOSE("# ss=0x%s", tal_hexstr(tmpctx, h->ss, sizeof(*h->ss)));
/* BOLT #8:
*
* 4. `ck, temp_k2 = HKDF(ck, ee)`
* * A new temporary encryption key is generated, which is
* used to generate the authenticating MAC.
*/
hkdf_two_keys(&h->ck, &h->temp_k, &h->ck, h->ss, sizeof(*h->ss));
SUPERVERBOSE("# ck,temp_k2=0x%s,0x%s",
tal_hexstr(tmpctx, &h->ck, sizeof(h->ck)),
tal_hexstr(tmpctx, &h->temp_k, sizeof(h->temp_k)));
/* BOLT #8:
*
* 5. `c = encryptWithAD(temp_k2, 0, h, zero)`
* * where `zero` is a zero-length plaintext
*/
encrypt_ad(&h->temp_k, 0, &h->h, sizeof(h->h), NULL, 0,
h->act2.tag, sizeof(h->act2.tag));
SUPERVERBOSE("# c=0x%s", tal_hexstr(tmpctx, h->act2.tag, sizeof(h->act2.tag)));
/* BOLT #8:
*
* 6. `h = SHA-256(h || c)`
* * Finally, the generated ciphertext is accumulated into the
* authenticating handshake digest.
*/
sha_mix_in(&h->h, h->act2.tag, sizeof(h->act2.tag));
SUPERVERBOSE("# h=0x%s", tal_hexstr(tmpctx, &h->h, sizeof(h->h)));
/* BOLT #8:
*
* 7. Send `m = 0 || e.pub.serializeCompressed() || c` to the initiator over the network buffer.
*/
h->act2.v = 0;
len = sizeof(h->act2.pubkey);
secp256k1_ec_pubkey_serialize(secp256k1_ctx, h->act2.pubkey, &len,
&h->e.pub.pubkey,
SECP256K1_EC_COMPRESSED);
SUPERVERBOSE("output: 0x%s", tal_hexstr(tmpctx, &h->act2, ACT_TWO_SIZE));
check_act_two(&h->act2);
return io_write(conn, &h->act2, ACT_TWO_SIZE, act_three_responder, h);
}
static struct io_plan *act_one_responder2(struct io_conn *conn,
struct handshake *h)
{
/* BOLT #8:
*
* 3. If `v` is an unrecognized handshake version, then the responder
* MUST abort the connection attempt.
*/
if (h->act1.v != 0)
return handshake_failed(conn, h);
/* BOLT #8:
*
* * The raw bytes of the remote party's ephemeral public key
* (`re`) are to be deserialized into a point on the curve using
* affine coordinates as encoded by the key's serialized
* composed format.
*/
if (secp256k1_ec_pubkey_parse(secp256k1_ctx, &h->re.pubkey,
h->act1.pubkey, sizeof(h->act1.pubkey)) != 1)
return handshake_failed(conn, h);
SUPERVERBOSE("# re=0x%s", type_to_string(tmpctx, struct pubkey, &h->re));
/* BOLT #8:
*
* 4. `h = SHA-256(h || re.serializeCompressed())`
* * The responder accumulates the initiator's ephemeral key into the
* authenticating handshake digest.
*/
sha_mix_in_key(&h->h, &h->re);
SUPERVERBOSE("# h=0x%s", tal_hexstr(tmpctx, &h->h, sizeof(h->h)));
/* BOLT #8:
*
* 5. `es = ECDH(s.priv, re)`
* * The responder performs an ECDH between its static private key and
* the initiator's ephemeral public key.
*/
h->ss = tal(h, struct secret);
ecdh(&h->re, h->ss);
SUPERVERBOSE("# ss=0x%s", tal_hexstr(tmpctx, h->ss, sizeof(*h->ss)));
/* BOLT #8:
*
* 6. `ck, temp_k1 = HKDF(ck, es)`
* * A new temporary encryption key is generated, which will
* shortly be used to check the authenticating MAC.
*/
hkdf_two_keys(&h->ck, &h->temp_k, &h->ck, h->ss, sizeof(*h->ss));
SUPERVERBOSE("# ck,temp_k1=0x%s,0x%s",
tal_hexstr(tmpctx, &h->ck, sizeof(h->ck)),
tal_hexstr(tmpctx, &h->temp_k, sizeof(h->temp_k)));
/* BOLT #8:
*
* 7. `p = decryptWithAD(temp_k1, 0, h, c)`
* * If the MAC check in this operation fails, then the initiator
* does _not_ know the responder's static public key. If this
* is the case, then the responder MUST terminate the connection
* without any further messages.
*/
if (!decrypt(&h->temp_k, 0, &h->h, sizeof(h->h),
h->act1.tag, sizeof(h->act1.tag), NULL, 0))
return handshake_failed(conn, h);
/* BOLT #8:
*
* 8. `h = SHA-256(h || c)`
* * The received ciphertext is mixed into the handshake digest.
* This step serves to ensure the payload wasn't modified by a
* MITM.
*/
sha_mix_in(&h->h, h->act1.tag, sizeof(h->act1.tag));
SUPERVERBOSE("# h=0x%s", tal_hexstr(tmpctx, &h->h, sizeof(h->h)));
return act_two_responder(conn, h);
}
static struct io_plan *act_one_responder(struct io_conn *conn,
struct handshake *h)
{
SUPERVERBOSE("Responder: Act 1");
/* BOLT #8:
*
* 1. Read _exactly_ 50 bytes from the network buffer.
*
* 2. Parse the read message (`m`) into `v`, `re`, and `c`:
* * where `v` is the _first_ byte of `m`, `re` is the next 33
* bytes of `m`, and `c` is the last 16 bytes of `m`.
*/
return io_read(conn, &h->act1, ACT_ONE_SIZE, act_one_responder2, h);
}
struct io_plan *responder_handshake_(struct io_conn *conn,
const struct pubkey *my_id,
const struct wireaddr_internal *addr,
struct oneshot *timeout,
struct io_plan *(*cb)(struct io_conn *,
const struct pubkey *,
const struct wireaddr_internal *,
struct crypto_state *,
struct oneshot *,
void *cbarg),
void *cbarg)
{
struct handshake *h = new_handshake(conn, my_id);
h->side = RESPONDER;
h->my_id = *my_id;
h->addr = *addr;
h->cbarg = cbarg;
h->cb = cb;
h->timeout = timeout;
return act_one_responder(conn, h);
}
struct io_plan *initiator_handshake_(struct io_conn *conn,
const struct pubkey *my_id,
const struct pubkey *their_id,
const struct wireaddr_internal *addr,
struct oneshot *timeout,
struct io_plan *(*cb)(struct io_conn *,
const struct pubkey *,
const struct wireaddr_internal *,
struct crypto_state *,
struct oneshot *timeout,
void *cbarg),
void *cbarg)
{
struct handshake *h = new_handshake(conn, their_id);