forked from NVIDIA/Megatron-LM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
840 lines (737 loc) · 31 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""dataset objects for jsons, csvs, and BERT datasets"""
import os
import time
from operator import itemgetter
from bisect import bisect_right
import json
import csv
import math
import random
from itertools import accumulate
from torch.utils import data
import pandas as pd
import numpy as np
import nltk
from nltk import tokenize
from .lazy_loader import lazy_array_loader, exists_lazy, make_lazy
from .tokenization import Tokenization
class ConcatDataset(data.Dataset):
"""
Dataset to concatenate multiple datasets.
Purpose: useful to assemble different existing datasets, possibly
large-scale datasets as the concatenation operation is done in an
on-the-fly manner.
Arguments:
datasets (sequence): List of datasets to be concatenated.
"""
@staticmethod
def cumsum(sequence):
r, s = [], 0
for e in sequence:
l = len(e)
r.append(l + s)
s += l
return r
def __init__(self, datasets, **kwargs):
super(ConcatDataset, self).__init__()
assert len(datasets) > 0, 'datasets should not be an empty iterable'
self.datasets = list(datasets)
self.is_lazy = sum([isinstance(ds, lazy_array_loader) for ds in self.datasets]) == len(self.datasets)
self.cumulative_sizes = self.cumsum(self.datasets)
self._X = None
self._Y = None
self._lens = None
def SetTokenizer(self, tokenizer):
for ds in self.datasets:
ds.SetTokenizer(tokenizer)
def GetTokenizer(self):
return self.datasets[0].GetTokenizer()
def __len__(self):
return self.cumulative_sizes[-1]
def __getitem__(self, idx):
dataset_idx = bisect_right(self.cumulative_sizes, idx)
if dataset_idx == 0:
sample_idx = idx
else:
sample_idx = idx - self.cumulative_sizes[dataset_idx - 1]
return self.datasets[dataset_idx][sample_idx]
@property
def lens(self):
if self._lens is None:
self._lens = []
if self.is_lazy:
for data in self.datasets:
self._lens.extend(data.lens)
else:
for data in self.datasets:
self._lens.extend([len(d['text']) if isinstance(d, dict) else len(d) for d in data])
return self._lens
@property
def X(self):
if self._X is None:
self._X = []
for data in self.datasets:
self._X.extend(data.X)
return self._X
@property
def Y(self):
if self._Y is None:
self._Y = []
for data in self.datasets:
self._Y.extend(list(data.Y))
self._Y = np.array(self._Y)
return self._Y
@property
def cummulative_sizes(self):
warnings.warn("cummulative_sizes attribute is renamed to "
"cumulative_sizes", DeprecationWarning, stacklevel=2)
return self.cumulative_sizes
class SplitDataset(data.Dataset):
"""
Dataset wrapper to access a subset of another dataset.
Purpose: useful to index into existing datasets, possibly
large-scale datasets as the subindexing operation is done in an
on-the-fly manner.
Arguments:
ds (Dataset or array-like): List of datasets to be subindexed
split_inds (1D array-like): List of indices part of subset
"""
def __init__(self, ds, split_inds, **kwargs):
self.split_inds = list(split_inds)
self.wrapped_data = ds
self.is_lazy = isinstance(ds, lazy_array_loader) or (hasattr(ds, 'is_lazy') and ds.is_lazy)
if self.is_lazy:
self.lens = itemgetter(*self.split_inds)(list(self.wrapped_data.lens))
self._X = None
self._Y = None
def __len__(self):
return len(self.split_inds)
def __getitem__(self, index):
return self.wrapped_data[self.split_inds[index]]
def SetTokenizer(self, tokenizer):
self.wrapped_data.SetTokenizer(tokenizer)
def GetTokenizer(self):
return self.wrapped_data.GetTokenizer()
@property
def X(self):
if self._X is None:
self._X = itemgetter(*self.split_inds)(self.wrapped_data.X)
return self._X
@property
def Y(self):
if self._Y is None:
self._Y = np.array(itemgetter(*self.split_inds)(self.wrapped_data.Y))
return self._Y
def __iter__(self):
for idx in self.split_inds:
yield self.wrapped_data[idx]
def split_ds(ds, split=[.8,.2,.0], shuffle=True):
"""
Split a dataset into subsets given proportions of how
much to allocate per split. If a split is 0% returns None for that split.
Purpose: Useful for creating train/val/test splits
Arguments:
ds (Dataset or array-like): Data to be split.
split (1D array-like): proportions to split `ds`. `sum(splits) != 0`
shuffle (boolean): Randomly split dataset. Default: True
"""
split_sum = sum(split)
if split_sum == 0:
raise Exception('Split cannot sum to 0.')
split = np.array(split)
split /= split_sum
ds_len = len(ds)
inds = np.arange(ds_len)
if shuffle:
np.random.shuffle(inds)
start_idx = 0
residual_idx = 0
rtn_ds = [None]*len(split)
for i, f in enumerate(split):
if f != 0:
proportion = ds_len*split[i]
residual_idx += proportion % 1
split_ = int(int(proportion) + residual_idx)
split_inds = inds[start_idx:start_idx+max(split_, 1)]
rtn_ds[i] = SplitDataset(ds, split_inds)
start_idx += split_
residual_idx %= 1
return rtn_ds
class csv_dataset(data.Dataset):
"""
Class for loading datasets from csv files.
Purpose: Useful for loading data for unsupervised modeling or transfer tasks
Arguments:
path (str): Path to csv file with dataset.
tokenizer (data_utils.Tokenizer): Tokenizer to use when processing text. Default: None
preprocess_fn (callable): Callable that process a string into desired format.
delim (str): delimiter for csv. Default: ','
binarize_sent (bool): binarize label values to 0 or 1 if they\'re on a different scale. Default: False
drop_unlabeled (bool): drop rows with unlabelled values. Always fills remaining empty
columns with -1 (regardless if rows are dropped based on value) Default: False
text_key (str): key to get text from csv. Default: 'sentence'
label_key (str): key to get label from json dictionary. Default: 'label'
Attributes:
X (list): all strings from the csv file
Y (np.ndarray): labels to train with
"""
def __init__(self, path, tokenizer=None, preprocess_fn=None, delim=',',
binarize_sent=False, drop_unlabeled=False, text_key='sentence', label_key='label',
**kwargs):
self.is_lazy = False
self.preprocess_fn = preprocess_fn
self.SetTokenizer(tokenizer)
self.path = path
self.delim = delim
self.text_key = text_key
self.label_key = label_key
self.drop_unlabeled = drop_unlabeled
if '.tsv' in self.path:
self.delim = '\t'
self.X = []
self.Y = []
try:
cols = [text_key]
if isinstance(label_key, list):
cols += label_key
else:
cols += [label_key]
data = pd.read_csv(self.path, sep=self.delim, usecols=cols, encoding='latin-1')
except:
data = pd.read_csv(self.path, sep=self.delim, usecols=[text_key], encoding='latin-1')
data = data.dropna(axis=0)
self.X = data[text_key].values.tolist()
try:
self.Y = data[label_key].values
except Exception as e:
self.Y = np.ones(len(self.X))*-1
if binarize_sent:
self.Y = binarize_labels(self.Y, hard=binarize_sent)
def SetTokenizer(self, tokenizer):
if tokenizer is None:
self.using_tokenizer = False
if not hasattr(self, '_tokenizer'):
self._tokenizer = tokenizer
else:
self.using_tokenizer = True
self._tokenizer = tokenizer
def GetTokenizer(self):
return self._tokenizer
@property
def tokenizer(self):
if self.using_tokenizer:
return self._tokenizer
return None
def __len__(self):
return len(self.X)
def __getitem__(self, index):
"""process+tokenize string and return string,label,and stringlen"""
x = self.X[index]
if self.tokenizer is not None:
x = self.tokenizer.EncodeAsIds(x, self.preprocess_fn)
elif self.preprocess_fn is not None:
x = self.preprocess_fn(x)
y = self.Y[index]
if isinstance(y, str):
if self.tokenizer is not None:
y = self.tokenizer.EncodeAsIds(y, self.preprocess_fn)
elif self.preprocess_fn is not None:
y = self.preprocess_fn(y)
return {'text': x, 'length': len(x), 'label': y}
def write(self, writer_gen=None, path=None, skip_header=False):
"""
given a generator of metrics for each of the data points X_i,
write the metrics, text, and labels to a csv file
"""
if path is None:
path = self.path+'.results'
print('generating csv at ' + path)
with open(path, 'w') as csvfile:
c = csv.writer(csvfile, delimiter=self.delim)
if writer_gen is not None:
#if first item of generator is a header of what the metrics mean then write header to csv file
if not skip_header:
header = (self.label_key,)+tuple(next(writer_gen))+(self.text_key,)
c.writerow(header)
for i, row in enumerate(writer_gen):
row = (self.Y[i],)+tuple(row)+(self.X[i],)
c.writerow(row)
else:
c.writerow([self.label_key, self.text_key])
for row in zip(self.Y, self.X):
c.writerow(row)
class json_dataset(data.Dataset):
"""
Class for loading datasets from a json dump.
Purpose: Useful for loading data for unsupervised modeling or transfer tasks
Arguments:
path (str): path to json file with dataset.
tokenizer (data_utils.Tokenizer): Tokenizer to use when processing text. Default: None
preprocess_fn (callable): callable function that process a string into desired format.
Takes string, maxlen=None, encode=None as arguments. Default: process_str
text_key (str): key to get text from json dictionary. Default: 'sentence'
label_key (str): key to get label from json dictionary. Default: 'label'
Attributes:
all_strs (list): list of all strings from the dataset
all_labels (list): list of all labels from the dataset (if they have it)
"""
def __init__(self, path, tokenizer=None, preprocess_fn=None, binarize_sent=False,
text_key='sentence', label_key='label', loose_json=False, **kwargs):
self.is_lazy = False
self.preprocess_fn = preprocess_fn
self.path = path
self.SetTokenizer(tokenizer)
self.X = []
self.Y = []
self.text_key = text_key
self.label_key = label_key
self.loose_json = loose_json
for j in self.load_json_stream(self.path):
s = j[text_key]
self.X.append(s)
self.Y.append(j[label_key])
if binarize_sent:
self.Y = binarize_labels(self.Y, hard=binarize_sent)
def SetTokenizer(self, tokenizer):
if tokenizer is None:
self.using_tokenizer = False
if not hasattr(self, '_tokenizer'):
self._tokenizer = tokenizer
else:
self.using_tokenizer = True
self._tokenizer = tokenizer
def GetTokenizer(self):
return self._tokenizer
@property
def tokenizer(self):
if self.using_tokenizer:
return self._tokenizer
return None
def __getitem__(self, index):
"""gets the index'th string from the dataset"""
x = self.X[index]
if self.tokenizer is not None:
x = self.tokenizer.EncodeAsIds(x, self.preprocess_fn)
elif self.preprocess_fn is not None:
x = self.preprocess_fn(x)
y = self.Y[index]
if isinstance(y, str):
if self.tokenizer is not None:
y = self.tokenizer.EncodeAsIds(y, self.preprocess_fn)
elif self.preprocess_fn is not None:
y = self.preprocess_fn(y)
return {'text': x, 'length': len(x), 'label': y}
def __len__(self):
return len(self.X)
def write(self, writer_gen=None, path=None, skip_header=False):
"""
given a generator of metrics for each of the data points X_i,
write the metrics, text, and labels to a json file
"""
if path is None:
path = self.path+'.results'
jsons = []
if writer_gen is not None:
#if first item of generator is a header of what the metrics mean then write header to csv file
def gen_helper():
keys = {}
keys[0] = self.label_key
if not skip_header:
for idx, k in enumerate(tuple(next(writer_gen))):
keys[idx+1] = k
for i, row in enumerate(writer_gen):
if i == 0 and skip_header:
for idx, _ in enumerate(row):
keys[idx+1] = 'metric_%d'%(idx,)
j = {}
for idx, v in enumerate((self.Y[i],)+tuple(row)):
k = keys[idx]
j[k] = v
yield j
else:
def gen_helper():
for y in self.Y:
j = {}
j[self.label_key] = y
yield j
def out_stream():
for i, j in enumerate(gen_helper()):
j[self.text_key] = self.X[i]
yield j
self.save_json_stream(path, out_stream())
def save_json_stream(self, save_path, json_stream):
if self.loose_json:
with open(save_path, 'w') as f:
for i, j in enumerate(json_stream):
write_string = ''
if i != 0:
write_string = '\n'
write_string += json.dumps(j)
f.write(write_string)
else:
jsons = [j for j in json_stream]
json.dump(jsons, open(save_path, 'w'), separators=(',', ':'))
def load_json_stream(self, load_path):
if not self.loose_json:
jsons = json.load(open(load_path, 'r'))
generator = iter(jsons)
else:
def gen_helper():
with open(load_path, 'r') as f:
for row in f:
yield json.loads(row)
generator = gen_helper()
for j in generator:
if self.label_key not in j:
j[self.label_key] = -1
yield j
class GPT2Dataset(data.Dataset):
def __init__(self, ds,
max_seq_len=1024,
num_samples=None,
weighted=True,
sample_across_doc=True,
random_across_doc_sampling=True,
sentence_start=False, **kwargs):
self.ds = ds
self.ds_len = len(self.ds)
self.num_samples = num_samples
if num_samples is None:
self.num_samples = 1000 * self.ds_len
self.max_seq_len = max_seq_len
self.tokenizer = self.ds.GetTokenizer()
self.ds.SetTokenizer(None)
self.weighted = weighted
self.sample_across_doc = sample_across_doc
self.random_across_doc_sampling = random_across_doc_sampling
self.sentence_start = sentence_start
self.init_weighting()
def init_weighting(self):
if self.weighted:
if hasattr(self.ds, 'is_lazy') and self.ds.is_lazy:
lens = np.array(self.ds.lens)
else:
lens = np.array([len(d['text']) if isinstance(d, dict)
else len(d) for d in self.ds])
self.total_len = np.sum(lens)
self.weighting = list(accumulate(lens))
else:
self.weighting = None
def get_weighted_samples(self, np_rng):
if self.weighting is not None:
idx = np_rng.randint(self.total_len)
return bisect_right(self.weighting, idx)
else:
return np_rng.randint(self.ds_len)
def __len__(self):
return self.num_samples
def __getitem__(self, idx):
# init rng
rng = random.Random(idx)
rng = np.random.RandomState(seed=[rng.randint(0, 2**32-1) for _ in range(16)])
# get possibly weighted random index from dataset
data_idx = self.get_weighted_samples(rng)
# data_idx = rng.choice(self.ds_len, p=self.weighting)
tokens = self.getidx(data_idx)
# truncate or pad tokens
num_tokens = len(tokens)
tokens_to_strip = num_tokens - self.max_seq_len - 1
if tokens_to_strip > 0:
strip_left_tokens = rng.randint(tokens_to_strip + 1)
tokens = tokens[strip_left_tokens:]
if self.sentence_start:
token_copy = list(tokens)
not_done = True
while (len(token_copy) > 0) and not_done:
tok = token_copy.pop(0)
if self.contains_sentence_end(tok):
tokens = token_copy
not_done = False
strip_right_rokens = len(tokens) - self.max_seq_len - 1
if strip_right_rokens > 0:
tokens = tokens[:-strip_right_rokens]
if self.sample_across_doc:
while (len(tokens) < (self.max_seq_len + 1)):
if self.random_across_doc_sampling:
data_idx = self.get_weighted_samples(rng)
else:
data_idx = (data_idx + 1) % self.ds_len
tokens += self.getidx(data_idx)
tokens = tokens[:(self.max_seq_len+1)]
tokens = self.pad_seq(tokens)
return {'text': np.array(tokens),}
def getidx(self, data_idx):
data = self.ds[data_idx]
if isinstance(data, dict):
data = data['text']
# tokenize
tokenization = self.tokenizer.EncodeAsIds(data)
tokenization.append(self.tokenizer.get_command('eos'))
tokens = tokenization.tokenization
return tokens
def pad_seq(self, seq):
total_tokens = self.max_seq_len + 1
num_pad_tokens = max(0, total_tokens - len(seq))
seq += [self.tokenizer.get_command('pad').Id]*(num_pad_tokens)
return seq
def contains_sentence_end(self, tok):
tok = self.tokenizer.IdToToken(tok)
if '.' in tok:
return True
if '?' in tok:
return True
if '!' in tok:
return True
return False
class bert_sentencepair_dataset(data.Dataset):
"""
Dataset containing sentencepairs for BERT training. Each index corresponds to a randomly generated sentence pair.
Arguments:
ds (Dataset or array-like): data corpus to use for training
max_seq_len (int): maximum sequence length to use for a sentence pair
mask_lm_prob (float): proportion of tokens to mask for masked LM
max_preds_per_seq (int): Maximum number of masked tokens per sentence pair. Default: math.ceil(max_seq_len*mask_lm_prob/10)*10
short_seq_prob (float): Proportion of sentence pairs purposefully shorter than max_seq_len
dataset_size (int): number of random sentencepairs in the dataset. Default: len(ds)*(len(ds)-1)
"""
def __init__(self, ds, max_seq_len=512, mask_lm_prob=.15, max_preds_per_seq=None, short_seq_prob=.01, dataset_size=None, presplit_sentences=False, weighted=True,**kwargs):
self.ds = ds
self.ds_len = len(self.ds)
self.tokenizer = self.ds.GetTokenizer()
self.vocab_words = list(self.tokenizer.text_token_vocab.values())
self.ds.SetTokenizer(None)
self.max_seq_len = max_seq_len
self.mask_lm_prob = mask_lm_prob
if max_preds_per_seq is None:
max_preds_per_seq = math.ceil(max_seq_len*mask_lm_prob /10)*10
self.max_preds_per_seq = max_preds_per_seq
self.short_seq_prob = short_seq_prob
self.dataset_size = dataset_size
if self.dataset_size is None:
self.dataset_size = self.ds_len * (self.ds_len-1)
self.presplit_sentences = presplit_sentences
if not self.presplit_sentences:
nltk.download('punkt', download_dir="./nltk")
self.weighted = weighted
self.get_weighting()
def get_weighting(self):
if self.weighted:
if hasattr(self.ds, 'is_lazy') and self.ds.is_lazy:
lens = np.array(self.ds.lens)
else:
lens = np.array([len(d['text']) if isinstance(d, dict) else len(d) for d in self.ds])
self.total_len = np.sum(lens)
self.weighting = list(accumulate(lens))
else:
self.weighting = None
def get_weighted_samples(self, np_rng):
if self.weighting is not None:
idx = np_rng.randint(self.total_len)
return bisect_right(self.weighting, idx)
else:
return np_rng.randint(self.ds_len)
def __len__(self):
return self.dataset_size
def __getitem__(self, idx):
# get rng state corresponding to index (allows deterministic random pair)
rng = random.Random(idx)
np_rng = np.random.RandomState(seed=[rng.randint(0, 2**32-1) for _ in range(16)])
# get seq length
target_seq_length = self.max_seq_len
short_seq = False
if rng.random() < self.short_seq_prob:
target_seq_length = rng.randint(2, target_seq_length)
short_seq = True
# get sentence pair and label
is_random_next = None
lena = 0
lenb = 0
while (is_random_next is None) or (lena < 1) or (lenb < 1):
tokensa, tokensb, is_random_next = self.create_random_sentencepair(target_seq_length, rng, np_rng)
lena = len(tokensa[0])
lenb = len(tokensb[0])
# truncate sentence pair to max_seq_len
tokensa, tokensb = self.truncate_seq_pair(tokensa, tokensb, self.max_seq_len, rng)
# join sentence pair, mask, and pad
tokens, mask, mask_labels, pad_mask = self.create_masked_lm_predictions(tokensa, tokensb, self.mask_lm_prob, self.max_preds_per_seq, self.vocab_words, rng)
sample = {'text': np.array(tokens[0]), 'types': np.array(tokens[1]), 'is_random': int(is_random_next), 'mask': np.array(mask), 'mask_labels': np.array(mask_labels), 'pad_mask': np.array(pad_mask)}
return sample
def sentence_split(self, document):
"""split document into sentences"""
lines = document.split('\n')
if self.presplit_sentences:
return [line for line in lines if line]
rtn = []
for line in lines:
if line != '':
rtn.extend(tokenize.sent_tokenize(line))
return rtn
def sentence_tokenize(self, sent, sentence_num=0, beginning=False, ending=False):
"""tokenize sentence and get token types"""
tokens = self.tokenizer.EncodeAsIds(sent).tokenization
str_type = 'str' + str(sentence_num)
token_types = [self.tokenizer.get_type(str_type).Id]*len(tokens)
return tokens, token_types
def get_doc(self, idx):
"""gets text of document corresponding to idx"""
rtn = self.ds[idx]
if isinstance(rtn, dict):
rtn = rtn['text']
return rtn
def create_random_sentencepair(self, target_seq_length, rng, np_rng):
"""
fetches a random sentencepair corresponding to rng state similar to
https://github.com/google-research/bert/blob/master/create_pretraining_data.py#L248-L294
"""
is_random_next = None
curr_strs = []
curr_str_types = []
curr_len = 0
while curr_len < 1:
curr_len = 0
doc_a = None
while doc_a is None:
if self.weighted:
# doc_a_idx = np_rng.choice(self.ds_len, p=self.weighting)
doc_a_idx = self.get_weighted_samples(np_rng)
else:
doc_a_idx = rng.randint(0, self.ds_len-1)
doc_a = self.sentence_split(self.get_doc(doc_a_idx))
if not doc_a:
doc_a = None
random_start_a = rng.randint(0, len(doc_a)-1)
while random_start_a < len(doc_a):
sentence = doc_a[random_start_a]
sentence, sentence_types = self.sentence_tokenize(sentence, 0, random_start_a == 0, random_start_a == len(doc_a))
curr_strs.append(sentence)
curr_str_types.append(sentence_types)
curr_len += len(sentence)
if random_start_a == len(doc_a) - 1 or curr_len >= target_seq_length:
break
random_start_a = (random_start_a+1)
if curr_strs:
num_a = 1
if len(curr_strs) >= 2:
num_a = rng.randint(0, len(curr_strs))
tokens_a = []
token_types_a = []
for j in range(num_a):
tokens_a.extend(curr_strs[j])
token_types_a.extend(curr_str_types[j])
tokens_b = []
token_types_b = []
is_random_next = False
if len(curr_strs) == 1 or rng.random() < 0.5:
is_random_next = True
target_b_length = target_seq_length - len(tokens_a)
b_len = 0
while b_len < 1:
doc_b = None
while doc_b is None:
doc_b_idx = rng.randint(0, self.ds_len - 2)
doc_b_idx += int(doc_b_idx >= doc_a_idx)
doc_b = self.sentence_split(self.get_doc(doc_b_idx))
if not doc_b:
doc_b = None
random_start_b = rng.randint(0, len(doc_b)-1)
while random_start_b < len(doc_b):
sentence_b = doc_b[random_start_b]
new_b_tokens, new_b_types = self.sentence_tokenize(sentence_b, 1, random_start_b == 0, random_start_b == len(doc_b))
b_len += len(new_b_tokens)
tokens_b.extend(new_b_tokens)
token_types_b.extend(new_b_types)
if len(tokens_b) >= target_b_length:
break
random_start_b = (random_start_b+1)
else:
is_random_next = False
for j in range(num_a, len(curr_strs)):
tokens_b.extend(curr_strs[j])
token_types_b.extend(curr_str_types[j])
return (tokens_a, token_types_a), (tokens_b, token_types_b), is_random_next
def truncate_seq_pair(self, a, b, max_seq_len, rng):
"""
Truncate sequence pair according to original BERT implementation:
https://github.com/google-research/bert/blob/master/create_pretraining_data.py#L391
"""
tokens_a, token_types_a = a
tokens_b, token_types_b = b
max_num_tokens = max_seq_len - 3
while True:
len_a = len(tokens_a)
len_b = len(tokens_b)
total_length = len_a + len_b
if total_length <= max_num_tokens:
break
if len(tokens_a) > len(tokens_b):
trunc_tokens = tokens_a
trunc_types = token_types_a
else:
trunc_tokens = tokens_b
trunc_types = token_types_b
assert len(trunc_tokens) >= 1
if rng.random() < 0.5:
trunc_tokens.pop(0)
trunc_types.pop(0)
else:
trunc_tokens.pop()
trunc_types.pop()
return (tokens_a, token_types_a), (tokens_b, token_types_b)
def mask_token(self, idx, tokens, types, vocab_words, rng):
"""
helper function to mask `idx` token from `tokens` according to
section 3.3.1 of https://arxiv.org/pdf/1810.04805.pdf
"""
label = tokens[idx]
if rng.random() < 0.8:
new_label = self.tokenizer.get_command('MASK').Id
else:
if rng.random() < 0.5:
new_label = label
else:
new_label = rng.choice(vocab_words)
tokens[idx] = new_label
return label
def pad_seq(self, seq):
"""helper function to pad sequence pair"""
num_pad = max(0, self.max_seq_len - len(seq))
pad_mask = [0] * len(seq) + [1] * num_pad
seq += [self.tokenizer.get_command('pad').Id] * num_pad
return seq, pad_mask
def create_masked_lm_predictions(self, a, b, mask_lm_prob, max_preds_per_seq, vocab_words, rng):
"""
Mask sequence pair for BERT training according to:
https://github.com/google-research/bert/blob/master/create_pretraining_data.py#L338
"""
tokens_a, token_types_a = a
tokens_b, token_types_b = b
tokens = [self.tokenizer.get_command('ENC').Id] + tokens_a + [self.tokenizer.get_command('sep').Id] + tokens_b + [self.tokenizer.get_command('sep').Id]
token_types = [token_types_a[0]] + token_types_a + [token_types_a[0]] + token_types_b + [token_types_b[0]]
len_a = len(tokens_a)
len_b = len(tokens_b)
cand_indices = [idx+1 for idx in range(len_a)] + [idx+2+len_a for idx in range(len_b)]
rng.shuffle(cand_indices)
output_tokens, pad_mask = self.pad_seq(list(tokens))
output_types, _ = self.pad_seq(list(token_types))
num_to_predict = min(max_preds_per_seq, max(1, int(round(len(tokens) * mask_lm_prob))))
mask = [0] * len(output_tokens)
mask_labels = [-1] * len(output_tokens)
for idx in sorted(cand_indices[:num_to_predict]):
mask[idx] = 1
label = self.mask_token(idx, output_tokens, output_types, vocab_words, rng)
mask_labels[idx] = label
return (output_tokens, output_types), mask, mask_labels, pad_mask