-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathmain.py
680 lines (540 loc) · 31.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
## ---- imports -----
import argparse
import utils_parsing as parse
import os
import random
import copy
import json
import torch
import numpy as np
from torch_geometric.data import DataLoader
from torch_geometric.data import Data
from utils import process_arguments, prepare_dataset
from utils_data_prep import separate_data, separate_data_given_split
from utils_encoding import encode
from train_test_funcs import train, test_isomorphism, test, test_ogb, setup_optimization, resume_training
from models_graph_classification_mlp import MLPSubstructures
from models_graph_classification import GNNSubstructures
from models_graph_classification_ogb_original import GNN_OGB
from ogb.graphproppred import Evaluator
## ---- main function -----
def main(args):
## ----------------------------------- argument processing
args, extract_ids_fn, count_fn, automorphism_fn, loss_fn, prediction_fn, perf_opt = process_arguments(args)
evaluator = Evaluator(args['dataset_name']) if args['dataset'] == 'ogb' else None
## ----------------------------------- infrastructure
torch.manual_seed(args['seed'])
torch.cuda.manual_seed(args['seed'])
torch.cuda.manual_seed_all(args['seed'])
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(args['np_seed'])
os.environ['PYTHONHASHSEED'] = str(args['seed'])
random.seed(args['seed'])
print('[info] Setting all random seeds {}'.format(args['seed']))
torch.set_num_threads(args['num_threads'])
if args['GPU']:
device = torch.device("cuda:"+str(args['device_idx']) if torch.cuda.is_available() else "cpu")
print('[info] Training will be performed on {}'.format(torch.cuda.get_device_name(args['device_idx'])))
else:
device = torch.device("cpu")
print('[info] Training will be performed on cpu')
if args['wandb']:
import wandb
wandb.init(sync_tensorboard=False, project=args['wandb_project'], reinit = False, config = args, entity=args['wandb_entity'])
print('[info] Monitoring with wandb')
## ----------------------------------- datasets: prepare and preprocess (count or load subgraph counts)
path = os.path.join(args['root_folder'], args['dataset'], args['dataset_name'])
subgraph_params = {'induced': args['induced'],
'edge_list': args['custom_edge_list'],
'directed': args['directed'],
'directed_orbits': args['directed_orbits']}
graphs_ptg, num_classes, orbit_partition_sizes = prepare_dataset(path,
args['dataset'],
args['dataset_name'],
args['id_scope'],
args['id_type'],
args['k'],
args['regression'],
extract_ids_fn,
count_fn,
automorphism_fn,
args['multiprocessing'],
args['num_processes'],
**subgraph_params)
# OGB-specifics: different feature collections
if args['dataset'] == 'ogb':
if args['features_scope'] == 'simple': # only retain the top two node/edge features
print('[info] (OGB) Using simple node and edge features')
simple_graphs = []
for graph in graphs_ptg:
new_data = Data()
for attr in graph.__iter__():
name, value = attr
setattr(new_data, name, value)
setattr(new_data, 'x', graph.x[:,:2])
setattr(new_data, 'edge_features', graph.edge_features[:,:2])
simple_graphs.append(new_data)
graphs_ptg = simple_graphs
else:
print('[info] (OGB) Using full node and edge features')
## ----------------------------------- node and edge feature dimensions
if graphs_ptg[0].x.dim()==1:
num_features = 1
else:
num_features = graphs_ptg[0].num_features
if hasattr(graphs_ptg[0], 'edge_features'):
if graphs_ptg[0].edge_features.dim()==1:
num_edge_features = 1
else:
num_edge_features = graphs_ptg[0].edge_features.shape[1]
else:
num_edge_features = None
if args['dataset'] == 'chemical' and args['dataset_name'] == 'ZINC':
d_in_node_encoder, d_in_edge_encoder = torch.load(os.path.join(path, 'processed', 'num_feature_types.pt'))
d_in_node_encoder, d_in_edge_encoder = [d_in_node_encoder], [d_in_edge_encoder]
else:
d_in_node_encoder = [num_features]
d_in_edge_encoder = [num_edge_features]
## ----------------------------------- encode ids and degrees (and possibly edge features)
degree_encoding = args['degree_encoding'] if args['degree_as_tag'][0] else None
id_encoding = args['id_encoding'] if args['id_encoding'] != 'None' else None
encoding_parameters = {
'ids': {
'bins': args['id_bins'],
'strategy': args['id_strategy'],
'range': args['id_range'],
},
'degree': {
'bins': args['degree_bins'],
'strategy': args['degree_strategy'],
'range': args['degree_range']}}
print("Encoding substructure counts and degree features... ", end='')
graphs_ptg, encoder_ids, d_id, encoder_degrees, d_degree = encode(graphs_ptg,
id_encoding,
degree_encoding,
**encoding_parameters)
print("Done.")
assert args['mode'] in ['isomorphism_test', 'train','test'], "Unknown mode. Supported options are 'isomorphism_test', 'train','test'"
## ----------------------------------- graph isomorphism testing
##
## We use GSN with random weights, so no training is performed
##
if args['mode'] == 'isomorphism_test':
eps = args['isomorphism_eps']
loader = DataLoader(graphs_ptg,
batch_size=args['batch_size'],
shuffle=False,
worker_init_fn=random.seed(args['seed']),
num_workers=args['num_workers'])
model = GNNSubstructures(
in_features=num_features,
out_features=num_classes,
encoder_ids=encoder_ids,
d_in_id=d_id,
in_edge_features=num_edge_features,
d_in_node_encoder=d_in_node_encoder,
d_in_edge_encoder=d_in_edge_encoder,
encoder_degrees=encoder_degrees,
d_degree=d_degree,
**args)
model = model.to(device)
print("Instantiated model:\n{}".format(model))
# count model params
params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("[info] Total number of parameters is: {}".format(params))
mm, num_not_distinguished = test_isomorphism(loader, model, device, eps=eps)
print('Total pairs: {}'.format(len(mm)))
print('Number of non-isomorphic pairs that are not distinguised: {}'.format(num_not_distinguished))
print('Failure Percentage: {:.2f}%'.format(100 * num_not_distinguished / len(mm)))
if args['wandb']:
wandb.run.summary['num_not_distinguished'] = num_not_distinguished
wandb.run.summary['total pairs'] = len(mm)
wandb.run.summary['failure_percentage'] = num_not_distinguished / len(mm)
return
## ----------------------------------- training
##
## Unified training code for all the datasets.
## Please use args['onesplit'] = True if cross-validation is not required.
##
print("Training starting now...")
train_losses_folds = []; train_accs_folds = []
test_losses_folds = []; test_accs_folds = []
val_losses_folds = []; val_accs_folds = []
results_folder_init = os.path.join(path, 'results', args['results_folder'])
fold_idxs = [-1] if args['onesplit'] else args['fold_idx']
for fold_idx in fold_idxs:
print('############# FOLD NUMBER {:01d} #############'.format(fold_idx))
# prepare result folder
results_folder = os.path.join(results_folder_init, str(fold_idx), args['model_name'])
if not os.path.exists(results_folder):
os.makedirs(results_folder)
# prepare folder for model checkpoints
checkpoint_path = os.path.join(results_folder, 'checkpoints')
if not os.path.exists(checkpoint_path):
os.makedirs(checkpoint_path)
# save parameters of the training job
with open(os.path.join(results_folder, 'params.json'), 'w') as fp:
saveparams = copy.deepcopy(args)
json.dump(saveparams, fp)
# split data into training/validation/test
if args['split'] == 'random': # use a random split
dataset_train, dataset_test = separate_data(graphs_ptg, args['split_seed'], fold_idx)
dataset_val = None
elif args['split'] == 'given': # use a precomputed split
dataset_train, dataset_test, dataset_val = separate_data_given_split(graphs_ptg, path, fold_idx)
# instantiate data loaders
loader_train = DataLoader(dataset_train,
batch_size=args['batch_size'],
shuffle=args['shuffle'],
worker_init_fn=random.seed(args['seed']),
num_workers=args['num_workers'])
loader_test = DataLoader(dataset_test,
batch_size=args['batch_size'],
shuffle=False,
worker_init_fn=random.seed(args['seed']),
num_workers=args['num_workers'])
if dataset_val is not None:
loader_val = DataLoader(dataset_val,
batch_size=args['batch_size'],
shuffle=False,
worker_init_fn=random.seed(args['seed']),
num_workers=args['num_workers'])
else:
loader_val = None
# instantiate model
if args['model_name'] == 'MLP':
Model = MLPSubstructures
else:
if args['dataset'] == 'ogb':
Model = GNN_OGB
else:
Model = GNNSubstructures
model = Model(
in_features=num_features,
out_features=num_classes,
encoder_ids=encoder_ids,
d_in_id=d_id,
in_edge_features=num_edge_features,
d_in_node_encoder=d_in_node_encoder,
d_in_edge_encoder=d_in_edge_encoder,
encoder_degrees=encoder_degrees,
d_degree=d_degree,
**args)
model = model.to(device)
print("Instantiated model:\n{}".format(model))
# count model params
params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("[info] Total number of parameters is: {}".format(params))
if args['mode'] == 'train':
# optimizer and lr scheduler
optimizer, scheduler = setup_optimization(model, **args)
# logging
if args['wandb']:
wandb.watch(model)
checkpoint_filename = os.path.join(checkpoint_path, args['checkpoint_file'] + '.pth.tar')
if args['resume']:
start_epoch = resume_training(checkpoint_filename, model, optimizer, scheduler, device)
else:
start_epoch = 0
# train (!)
metrics = train(
loader_train,
loader_test,
model,
optimizer,
loss_fn,
loader_val=loader_val,
prediction_fn=prediction_fn,
evaluator=evaluator,
scheduler=scheduler,
min_lr=args['min_lr'],
fold_idx=fold_idx,
start_epoch=start_epoch,
n_epochs=args['num_epochs'],
n_iters=args['num_iters'],
n_iters_test=args['num_iters_test'],
eval_freq=args['eval_frequency'],
checkpoint_file=checkpoint_filename,
wandb_realtime=args['wandb_realtime'] and args['wandb'])
# log results of training
train_losses, train_accs, test_losses, test_accs, val_losses, val_accs = metrics
train_losses_folds.append(train_losses)
train_accs_folds.append(train_accs)
test_losses_folds.append(test_losses)
test_accs_folds.append(test_accs)
val_losses_folds.append(val_losses)
val_accs_folds.append(val_accs)
best_idx = perf_opt(val_accs) if loader_val is not None else perf_opt(test_accs)
print("Training complete!")
print("\tbest train accuracy {:.4f}\n\tbest test accuracy {:.4f}".format(train_accs[best_idx], test_accs[best_idx]))
elif args['mode'] == 'test':
checkpoint_filename = os.path.join(checkpoint_path, args['checkpoint_file'] + '.pth.tar')
print('Loading checkpoint from file {}... '.format(checkpoint_filename), end='')
checkpoint_dict = torch.load(checkpoint_filename, map_location=device)
model.load_state_dict(checkpoint_dict['model_state_dict'])
print('Done.')
if args['dataset'] == 'ogb':
_, train_acc = test_ogb(loader_train, model, loss_fn, device, evaluator)
_, test_acc = test_ogb(loader_test, model, loss_fn, device, evaluator)
else:
_, train_acc = test(loader_train, model, loss_fn, device, prediction_fn)
_, test_acc = test(loader_test, model, loss_fn, device, prediction_fn)
train_accs_folds.append(train_acc)
test_accs_folds.append(test_acc)
if dataset_val is not None:
if args['dataset'] == 'ogb':
_, val_acc = test(loader_val, model, loss_fn, device, prediction_fn)
else:
_, val_acc = test(loader_val, model, loss_fn, device, prediction_fn)
val_accs_folds.append(val_acc)
print("Evaluation complete!")
if dataset_val is not None:
print("\ttrain accuracy {:.4f}\n\ttest accuracy {:.4f}\n\tvalidation accuracy {:.4f}".format(train_acc, test_acc, val_acc))
else:
print("\ttrain accuracy {:.4f}\n\ttest accuracy {:.4f}".format(train_acc, test_acc))
else:
raise NotImplementedError('Mode {} is not currently supported.'.format(args['mode']))
# log metrics
if args['mode'] == 'train':
train_accs_folds = np.array(train_accs_folds)
test_accs_folds = np.array(test_accs_folds)
train_losses_folds = np.array(train_losses_folds)
test_losses_folds = np.array(test_losses_folds)
train_accs_mean = np.mean(train_accs_folds, 0)
train_accs_std = np.std(train_accs_folds, 0)
test_accs_mean = np.mean(test_accs_folds, 0)
test_accs_std = np.std(test_accs_folds, 0)
train_losses_mean = np.mean(train_losses_folds, 0)
test_losses_mean = np.mean(test_losses_folds, 0)
if val_losses_folds[0] is not None:
val_accs_folds = np.array(val_accs_folds)
val_losses_folds = np.array(val_losses_folds)
val_accs_mean = np.mean(val_accs_folds, 0)
val_accs_std = np.std(val_accs_folds, 0)
val_losses_mean = np.mean(val_losses_folds, 0)
best_index = perf_opt(test_accs_mean) if val_losses_folds[0] is None else perf_opt(val_accs_mean)
if not args['wandb_realtime'] and args['wandb']:
for epoch in range(len(train_accs_mean)):
# log scores for each fold in the current epoch
for fold_idx in fold_idxs:
log_corpus = {
'train_accs_fold_'+str(fold_idx): train_accs_folds[fold_idx, epoch],
'train_losses_fold_'+str(fold_idx): train_losses_folds[fold_idx, epoch],
'test_accs_fold_'+str(fold_idx): test_accs_folds[fold_idx,epoch],
'test_losses_fold_'+str(fold_idx): test_losses_folds[fold_idx,epoch]}
if val_losses_folds[0] is not None:
log_corpus['val_accs_fold_'+str(fold_idx)] = val_accs_folds[fold_idx, epoch]
log_corpus['val_losses_fold_'+str(fold_idx)] = val_losses_folds[fold_idx, epoch]
wandb.log(log_corpus, step=epoch)
# log epoch score means across folds
log_corpus = {
'train_accs_mean': train_accs_mean[epoch],
'train_accs_std': train_accs_std[epoch],
'test_accs_mean': test_accs_mean[epoch],
'test_accs_std': test_accs_std[epoch],
'train_losses_mean': train_losses_mean[epoch],
'test_losses_mean': test_losses_mean[epoch]}
if val_losses_folds[0] is not None:
log_corpus['val_accs_mean'] = val_accs_mean[epoch]
log_corpus['val_accs_std'] = val_accs_std[epoch]
log_corpus['val_losses_mean'] = val_losses_mean[epoch]
wandb.log(log_corpus, step=epoch)
if args['wandb']:
wandb.run.summary['best_epoch_val'] = best_index
wandb.run.summary['best_train_mean'] = train_accs_mean[best_index]
wandb.run.summary['best_train_std'] = train_accs_std[best_index]
wandb.run.summary['best_train_loss_mean'] = train_losses_mean[best_index]
wandb.run.summary['last_train_std'] = train_accs_std[-1]
wandb.run.summary['last_train_mean'] = train_accs_mean[-1]
wandb.run.summary['best_test_mean'] = test_accs_mean[best_index]
wandb.run.summary['best_test_std'] = test_accs_std[best_index]
wandb.run.summary['best_test_loss_mean'] = test_losses_mean[best_index]
wandb.run.summary['last_test_std'] = test_accs_std[-1]
wandb.run.summary['last_test_mean'] = test_accs_mean[-1]
if val_losses_folds[0] is not None:
wandb.run.summary['best_validation_std'] = val_accs_std[best_index]
wandb.run.summary['best_validation_mean'] = val_accs_mean[best_index]
wandb.run.summary['best_validation_loss_mean'] = val_losses_mean[best_index]
wandb.run.summary['last_validation_std'] = val_accs_std[-1]
wandb.run.summary['last_validation_mean'] = val_accs_mean[-1]
wandb.run.summary['performance_at_best_epoch'] = val_accs_mean[best_index]
else:
wandb.run.summary['performance_at_best_epoch'] = test_accs_mean[best_index]
print("Best train mean: {:.4f} +/- {:.4f}".format(train_accs_mean[best_index], train_accs_std[best_index]))
print("Best test mean: {:.4f} +/- {:.4f}".format(test_accs_mean[best_index], test_accs_std[best_index]))
if args['return_scores']:
scores = dict()
scores['best_train_mean'] = train_accs_mean[best_index]
scores['best_train_std'] = train_accs_std[best_index]
scores['last_train_std'] = train_accs_std[-1]
scores['last_train_mean'] = train_accs_mean[-1]
scores['best_test_mean'] = test_accs_mean[best_index]
scores['best_test_std'] = test_accs_std[best_index]
scores['last_test_std'] = test_accs_std[-1]
scores['last_test_mean'] = test_accs_mean[-1]
if val_losses_folds[0] is not None:
scores['best_validation_std'] = val_accs_std[best_index]
scores['best_validation_mean'] = val_accs_mean[best_index]
scores['last_validation_std'] = val_accs_std[-1]
scores['last_validation_mean'] = val_accs_mean[-1]
if args['mode'] == 'test' and not args['onesplit']:
train_acc_mean = np.mean(train_accs_folds)
test_acc_mean = np.mean(test_accs_folds)
train_acc_std = np.std(train_accs_folds)
test_acc_std = np.std(test_accs_folds)
print("Train accuracy: {:.4f} +/- {:.4f}".format(train_acc_mean, train_acc_std))
print("Test accuracy: {:.4f} +/- {:.4f}".format(test_acc_mean, test_acc_std))
if dataset_val is not None:
val_acc_mean = np.mean(val_accs_folds)
val_acc_std = np.std(val_accs_folds)
print("Validation accuracy: {:.4f} +/- {:.4f}".format(val_acc_mean, val_acc_std))
if args['mode'] == 'train' and args['return_scores']:
return scores
else:
return None
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# set seeds to ensure reproducibility
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--split_seed', type=int, default=0)
parser.add_argument('--np_seed', type=int, default=0)
# this specifies the folds for cross-validation
parser.add_argument('--fold_idx', type=parse.str2list2int, default=[0,1,2,3,4,5,6,7,8,9])
parser.add_argument('--onesplit', type=parse.str2bool, default=False)
# set multiprocessing to true in order to do the precomputation in parallel
parser.add_argument('--multiprocessing', type=parse.str2bool, default=False)
parser.add_argument('--num_processes', type=int, default=64)
###### data loader parameters
parser.add_argument('--num_workers', type=int, default=0)
parser.add_argument('--num_threads', type=int, default=1)
###### these are to select the dataset:
# - dataset can be bionformatics or social and states the class;
# - name is for the specific problem itself
parser.add_argument('--dataset', type=str, default='bioinformatics')
parser.add_argument('--dataset_name', type=str, default='MUTAG')
parser.add_argument('--split', type=str, default='given')
parser.add_argument('--root_folder', type=str, default='./datasets')
###### set degree_as_tag to True to use the degree as node features;
# set retain_features to True to keep the existing features as well;
parser.add_argument('--degree_as_tag', type=parse.str2bool, default=False)
parser.add_argument('--retain_features', type=parse.str2bool, default=False)
###### used only for ogb to reproduce the different configurations,
# i.e. additional features (full) or not (simple), virtual node or not (vn: True)
parser.add_argument('--features_scope', type=str, default="full")
parser.add_argument('--vn', type=parse.str2bool, default=False)
# denotes the aggregation used by the virtual node
parser.add_argument('--vn_pooling', type=str, default='sum')
parser.add_argument('--input_vn_encoder', type=str, default='one_hot_encoder')
parser.add_argument('--d_out_vn_encoder', type=int, default=None)
parser.add_argument('--d_out_vn', type=int, default=None)
###### substructure-related parameters:
# - id_type: substructure family
# - induced: graphlets vs motifs
# - edge_automorphism: induced edge automorphism or line graph edge automorphism (slightly larger group than the induced edge automorphism)
# - k: size of substructures that are used; e.g. k=3 means three nodes
# - id_scope: local vs global --> GSN-e vs GSN-v
parser.add_argument('--id_type', type=str, default='cycle_graph')
parser.add_argument('--induced', type=parse.str2bool, default=False)
parser.add_argument('--edge_automorphism', type=str, default='induced')
parser.add_argument('--k', type=parse.str2list2int, default=[3])
parser.add_argument('--id_scope', type=str, default='local')
parser.add_argument('--custom_edge_list', type=parse.str2ListOfListsOfLists2int, default=None)
parser.add_argument('--directed', type=parse.str2bool, default=False)
parser.add_argument('--directed_orbits', type=parse.str2bool, default=False)
###### encoding args: different ways to encode discrete data
parser.add_argument('--id_encoding', type=str, default='one_hot_unique')
parser.add_argument('--degree_encoding', type=str, default='one_hot_unique')
# binning and minmax encoding parameters. NB: not used in our experimental evaluation
parser.add_argument('--id_bins', type=parse.str2list2int, default=None)
parser.add_argument('--degree_bins', type=parse.str2list2int, default=None)
parser.add_argument('--id_strategy', type=str, default='uniform')
parser.add_argument('--degree_strategy', type=str, default='uniform')
parser.add_argument('--id_range', type=parse.str2list2int, default=None)
parser.add_argument('--degree_range', type=parse.str2list2int, default=None)
parser.add_argument('--id_embedding', type=str, default='one_hot_encoder')
parser.add_argument('--d_out_id_embedding', type=int, default=None)
parser.add_argument('--degree_embedding', type=str, default='one_hot_encoder')
parser.add_argument('--d_out_degree_embedding', type=int, default=None)
parser.add_argument('--input_node_encoder', type=str, default='None')
parser.add_argument('--d_out_node_encoder', type=int, default=None)
parser.add_argument('--edge_encoder', type=str, default='None')
parser.add_argument('--d_out_edge_encoder', type=int, default=None)
# sum or concatenate embeddings when multiple discrete features available
parser.add_argument('--multi_embedding_aggr', type=str, default='sum')
# only used for the GIN variant: creates a dummy variable for self loops (e.g. edge features or edge counts)
parser.add_argument('--extend_dims', type=parse.str2bool, default=True)
###### model to be used and architecture parameters, in particular
# - d_h: is the dimension for internal mlps, set to None to
# make it equal to d_out
# - final_projection: is for jumping knowledge, specifying
# which layer is accounted for in the last model stage, if
# the list has only one element, that that value gets applied
# to all the layers
# - jk_mlp: set it to True to use an MLP after each jk layer, otherwise a linear layer will be used
parser.add_argument('--model_name', type=str, default='GSN_sparse')
parser.add_argument('--random_features', type=parse.str2bool, default=False)
parser.add_argument('--num_mlp_layers', type=int, default=2)
parser.add_argument('--d_h', type=int, default=None)
parser.add_argument('--activation_mlp', type=str, default='relu')
parser.add_argument('--bn_mlp', type=parse.str2bool, default=True)
parser.add_argument('--num_layers', type=int, default=2)
parser.add_argument('--d_msg', type=int, default=None)
parser.add_argument('--d_out', type=int, default=16)
parser.add_argument('--bn', type=parse.str2bool, default=True)
parser.add_argument('--dropout_features', type=float, default=0)
parser.add_argument('--activation', type=str, default='relu')
parser.add_argument('--train_eps', type=parse.str2bool, default=False)
parser.add_argument('--aggr', type=str, default='add')
parser.add_argument('--flow', type=str, default='source_to_target')
parser.add_argument('--final_projection', type=parse.str2list2bool, default=[True])
parser.add_argument('--jk_mlp', type=parse.str2bool, default=False)
parser.add_argument('--residual', type=parse.str2bool, default=False)
parser.add_argument('--readout', type=str, default='sum')
###### architecture variations:
# - msg_kind: gin (extends gin with structural identifiers),
# general (general formulation with MLPs - eq 3,4 of the main paper)
# ogb (extends the architecture used in ogb with structural identifiers)
# - inject*: passes the relevant variable to deeper layers akin to skip connections.
# If set to False, then the variable is used only as input to the first layer
parser.add_argument('--msg_kind', type=str, default='general')
parser.add_argument('--inject_ids', type=parse.str2bool, default=False)
parser.add_argument('--inject_degrees', type=parse.str2bool, default=False)
parser.add_argument('--inject_edge_features', type=parse.str2bool, default=True)
###### optimisation parameters
parser.add_argument('--shuffle', type=parse.str2bool, default=True)
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--num_epochs', type=int, default=300)
parser.add_argument('--num_iters', type=int, default=None)
parser.add_argument('--num_iters_test', type=int, default=None)
parser.add_argument('--eval_frequency', type=int, default=1)
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--regularization', type=float, default=0)
parser.add_argument('--scheduler', type=str, default='StepLR')
parser.add_argument('--scheduler_mode', type=str, default='min')
parser.add_argument('--min_lr', type=float, default=0.0)
parser.add_argument('--decay_steps', type=int, default=50)
parser.add_argument('--decay_rate', type=float, default=0.5)
parser.add_argument('--patience', type=int, default=20)
###### training parameters: task, loss, metric
parser.add_argument('--regression', type=parse.str2bool, default=False)
parser.add_argument('--loss_fn', type=str, default='CrossEntropyLoss')
parser.add_argument('--prediction_fn', type=str, default='multi_class_accuracy')
###### folders to save results
parser.add_argument('--results_folder', type=str, default='temp')
parser.add_argument('--checkpoint_file', type=str, default='checkpoint')
###### general (mode, gpu, logging)
parser.add_argument('--mode', type=str, default='train')
parser.add_argument('--resume', type=parse.str2bool, default=False)
parser.add_argument('--GPU', type=parse.str2bool, default=True)
parser.add_argument('--device_idx', type=int, default=0)
parser.add_argument('--wandb', type=parse.str2bool, default=True)
parser.add_argument('--wandb_realtime', type=parse.str2bool, default=False)
parser.add_argument('--wandb_project', type=str, default="gsn_project")
parser.add_argument('--wandb_entity', type=str, default="anonymous")
###### misc
parser.add_argument('--isomorphism_eps', type=float, default=1e-2)
parser.add_argument('--return_scores', action='store_true')
args = parser.parse_args()
print(args)
main(vars(args))