forked from tidyverse/ggplot2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeom_boxplot.Rd
243 lines (210 loc) · 9.57 KB
/
geom_boxplot.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/geom-boxplot.r, R/stat-boxplot.r
\name{geom_boxplot}
\alias{geom_boxplot}
\alias{stat_boxplot}
\title{A box and whiskers plot (in the style of Tukey)}
\usage{
geom_boxplot(
mapping = NULL,
data = NULL,
stat = "boxplot",
position = "dodge2",
...,
outlier.colour = NULL,
outlier.color = NULL,
outlier.fill = NULL,
outlier.shape = 19,
outlier.size = 1.5,
outlier.stroke = 0.5,
outlier.alpha = NULL,
notch = FALSE,
notchwidth = 0.5,
varwidth = FALSE,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE
)
stat_boxplot(
mapping = NULL,
data = NULL,
geom = "boxplot",
position = "dodge2",
...,
coef = 1.5,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE
)
}
\arguments{
\item{mapping}{Set of aesthetic mappings created by \code{\link[=aes]{aes()}} or
\code{\link[=aes_]{aes_()}}. If specified and \code{inherit.aes = TRUE} (the
default), it is combined with the default mapping at the top level of the
plot. You must supply \code{mapping} if there is no plot mapping.}
\item{data}{The data to be displayed in this layer. There are three
options:
If \code{NULL}, the default, the data is inherited from the plot
data as specified in the call to \code{\link[=ggplot]{ggplot()}}.
A \code{data.frame}, or other object, will override the plot
data. All objects will be fortified to produce a data frame. See
\code{\link[=fortify]{fortify()}} for which variables will be created.
A \code{function} will be called with a single argument,
the plot data. The return value must be a \code{data.frame}, and
will be used as the layer data. A \code{function} can be created
from a \code{formula} (e.g. \code{~ head(.x, 10)}).}
\item{position}{Position adjustment, either as a string, or the result of
a call to a position adjustment function.}
\item{...}{Other arguments passed on to \code{\link[=layer]{layer()}}. These are
often aesthetics, used to set an aesthetic to a fixed value, like
\code{colour = "red"} or \code{size = 3}. They may also be parameters
to the paired geom/stat.}
\item{outlier.colour, outlier.color, outlier.fill, outlier.shape, outlier.size, outlier.stroke, outlier.alpha}{Default aesthetics for outliers. Set to \code{NULL} to inherit from the
aesthetics used for the box.
In the unlikely event you specify both US and UK spellings of colour, the
US spelling will take precedence.
Sometimes it can be useful to hide the outliers, for example when overlaying
the raw data points on top of the boxplot. Hiding the outliers can be achieved
by setting \code{outlier.shape = NA}. Importantly, this does not remove the outliers,
it only hides them, so the range calculated for the y-axis will be the
same with outliers shown and outliers hidden.}
\item{notch}{If \code{FALSE} (default) make a standard box plot. If
\code{TRUE}, make a notched box plot. Notches are used to compare groups;
if the notches of two boxes do not overlap, this suggests that the medians
are significantly different.}
\item{notchwidth}{For a notched box plot, width of the notch relative to
the body (defaults to \code{notchwidth = 0.5}).}
\item{varwidth}{If \code{FALSE} (default) make a standard box plot. If
\code{TRUE}, boxes are drawn with widths proportional to the
square-roots of the number of observations in the groups (possibly
weighted, using the \code{weight} aesthetic).}
\item{na.rm}{If \code{FALSE}, the default, missing values are removed with
a warning. If \code{TRUE}, missing values are silently removed.}
\item{orientation}{The orientation of the layer. The default (\code{NA})
automatically determines the orientation from the aesthetic mapping. In the
rare event that this fails it can be given explicitly by setting \code{orientation}
to either \code{"x"} or \code{"y"}. See the \emph{Orientation} section for more detail.}
\item{show.legend}{logical. Should this layer be included in the legends?
\code{NA}, the default, includes if any aesthetics are mapped.
\code{FALSE} never includes, and \code{TRUE} always includes.
It can also be a named logical vector to finely select the aesthetics to
display.}
\item{inherit.aes}{If \code{FALSE}, overrides the default aesthetics,
rather than combining with them. This is most useful for helper functions
that define both data and aesthetics and shouldn't inherit behaviour from
the default plot specification, e.g. \code{\link[=borders]{borders()}}.}
\item{geom, stat}{Use to override the default connection between
\code{geom_boxplot()} and \code{stat_boxplot()}.}
\item{coef}{Length of the whiskers as multiple of IQR. Defaults to 1.5.}
}
\description{
The boxplot compactly displays the distribution of a continuous variable.
It visualises five summary statistics (the median, two hinges
and two whiskers), and all "outlying" points individually.
}
\section{Orientation}{
This geom treats each axis differently and, thus, can thus have two orientations. Often the orientation is easy to deduce from a combination of the given mappings and the types of positional scales in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation can be specified directly using the \code{orientation} parameter, which can be either \code{"x"} or \code{"y"}. The value gives the axis that the geom should run along, \code{"x"} being the default orientation you would expect for the geom.
}
\section{Summary statistics}{
The lower and upper hinges correspond to the first and third quartiles
(the 25th and 75th percentiles). This differs slightly from the method used
by the \code{\link[=boxplot]{boxplot()}} function, and may be apparent with small samples.
See \code{\link[=boxplot.stats]{boxplot.stats()}} for for more information on how hinge
positions are calculated for \code{\link[=boxplot]{boxplot()}}.
The upper whisker extends from the hinge to the largest value no further than
1.5 * IQR from the hinge (where IQR is the inter-quartile range, or distance
between the first and third quartiles). The lower whisker extends from the
hinge to the smallest value at most 1.5 * IQR of the hinge. Data beyond the
end of the whiskers are called "outlying" points and are plotted
individually.
In a notched box plot, the notches extend \code{1.58 * IQR / sqrt(n)}.
This gives a roughly 95\% confidence interval for comparing medians.
See McGill et al. (1978) for more details.
}
\section{Aesthetics}{
\code{geom_boxplot()} understands the following aesthetics (required aesthetics are in bold):
\itemize{
\item \strong{\code{x} \emph{or} \code{y}}
\item \strong{\code{lower} \emph{or} \code{xlower}}
\item \strong{\code{upper} \emph{or} \code{xupper}}
\item \strong{\code{middle} \emph{or} \code{xmiddle}}
\item \strong{\code{ymin} \emph{or} \code{xmin}}
\item \strong{\code{ymax} \emph{or} \code{xmax}}
\item \code{alpha}
\item \code{colour}
\item \code{fill}
\item \code{group}
\item \code{linetype}
\item \code{shape}
\item \code{size}
\item \code{weight}
}
Learn more about setting these aesthetics in \code{vignette("ggplot2-specs")}.
}
\section{Computed variables}{
\code{stat_boxplot()} provides the following variables, some of which depend on the orientation:
\describe{
\item{width}{width of boxplot}
\item{ymin \emph{or} xmin}{lower whisker = smallest observation greater than or equal to lower hinge - 1.5 * IQR}
\item{lower \emph{or} xlower}{lower hinge, 25\% quantile}
\item{notchlower}{lower edge of notch = median - 1.58 * IQR / sqrt(n)}
\item{middle \emph{or} xmiddle}{median, 50\% quantile}
\item{notchupper}{upper edge of notch = median + 1.58 * IQR / sqrt(n)}
\item{upper \emph{or} xupper}{upper hinge, 75\% quantile}
\item{ymax \emph{or} xmax}{upper whisker = largest observation less than or equal to upper hinge + 1.5 * IQR}
}
}
\examples{
p <- ggplot(mpg, aes(class, hwy))
p + geom_boxplot()
# Orientation follows the discrete axis
ggplot(mpg, aes(hwy, class)) + geom_boxplot()
p + geom_boxplot(notch = TRUE)
p + geom_boxplot(varwidth = TRUE)
p + geom_boxplot(fill = "white", colour = "#3366FF")
# By default, outlier points match the colour of the box. Use
# outlier.colour to override
p + geom_boxplot(outlier.colour = "red", outlier.shape = 1)
# Remove outliers when overlaying boxplot with original data points
p + geom_boxplot(outlier.shape = NA) + geom_jitter(width = 0.2)
# Boxplots are automatically dodged when any aesthetic is a factor
p + geom_boxplot(aes(colour = drv))
# You can also use boxplots with continuous x, as long as you supply
# a grouping variable. cut_width is particularly useful
ggplot(diamonds, aes(carat, price)) +
geom_boxplot()
ggplot(diamonds, aes(carat, price)) +
geom_boxplot(aes(group = cut_width(carat, 0.25)))
# Adjust the transparency of outliers using outlier.alpha
ggplot(diamonds, aes(carat, price)) +
geom_boxplot(aes(group = cut_width(carat, 0.25)), outlier.alpha = 0.1)
\donttest{
# It's possible to draw a boxplot with your own computations if you
# use stat = "identity":
y <- rnorm(100)
df <- data.frame(
x = 1,
y0 = min(y),
y25 = quantile(y, 0.25),
y50 = median(y),
y75 = quantile(y, 0.75),
y100 = max(y)
)
ggplot(df, aes(x)) +
geom_boxplot(
aes(ymin = y0, lower = y25, middle = y50, upper = y75, ymax = y100),
stat = "identity"
)
}
}
\references{
McGill, R., Tukey, J. W. and Larsen, W. A. (1978) Variations of
box plots. The American Statistician 32, 12-16.
}
\seealso{
\code{\link[=geom_quantile]{geom_quantile()}} for continuous \code{x},
\code{\link[=geom_violin]{geom_violin()}} for a richer display of the distribution, and
\code{\link[=geom_jitter]{geom_jitter()}} for a useful technique for small data.
}