forked from tidyverse/ggplot2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeom_density_2d.Rd
254 lines (220 loc) · 8.34 KB
/
geom_density_2d.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/geom-density2d.r, R/stat-density-2d.r
\name{geom_density_2d}
\alias{geom_density_2d}
\alias{geom_density2d}
\alias{geom_density_2d_filled}
\alias{geom_density2d_filled}
\alias{stat_density_2d}
\alias{stat_density2d}
\alias{stat_density_2d_filled}
\alias{stat_density2d_filled}
\title{Contours of a 2D density estimate}
\usage{
geom_density_2d(
mapping = NULL,
data = NULL,
stat = "density_2d",
position = "identity",
...,
contour_var = "density",
lineend = "butt",
linejoin = "round",
linemitre = 10,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
geom_density_2d_filled(
mapping = NULL,
data = NULL,
stat = "density_2d_filled",
position = "identity",
...,
contour_var = "density",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
stat_density_2d(
mapping = NULL,
data = NULL,
geom = "density_2d",
position = "identity",
...,
contour = TRUE,
contour_var = "density",
n = 100,
h = NULL,
adjust = c(1, 1),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
stat_density_2d_filled(
mapping = NULL,
data = NULL,
geom = "density_2d_filled",
position = "identity",
...,
contour = TRUE,
contour_var = "density",
n = 100,
h = NULL,
adjust = c(1, 1),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
}
\arguments{
\item{mapping}{Set of aesthetic mappings created by \code{\link[=aes]{aes()}} or
\code{\link[=aes_]{aes_()}}. If specified and \code{inherit.aes = TRUE} (the
default), it is combined with the default mapping at the top level of the
plot. You must supply \code{mapping} if there is no plot mapping.}
\item{data}{The data to be displayed in this layer. There are three
options:
If \code{NULL}, the default, the data is inherited from the plot
data as specified in the call to \code{\link[=ggplot]{ggplot()}}.
A \code{data.frame}, or other object, will override the plot
data. All objects will be fortified to produce a data frame. See
\code{\link[=fortify]{fortify()}} for which variables will be created.
A \code{function} will be called with a single argument,
the plot data. The return value must be a \code{data.frame}, and
will be used as the layer data. A \code{function} can be created
from a \code{formula} (e.g. \code{~ head(.x, 10)}).}
\item{position}{Position adjustment, either as a string, or the result of
a call to a position adjustment function.}
\item{...}{
Arguments passed on to \code{\link[=geom_contour]{geom_contour}}
\describe{
\item{\code{bins}}{Number of contour bins. Overridden by \code{binwidth}.}
\item{\code{binwidth}}{The width of the contour bins. Overridden by \code{breaks}.}
\item{\code{breaks}}{Numeric vector to set the contour breaks.
Overrides \code{binwidth} and \code{bins}. By default, this is a vector of
length ten with \code{\link[=pretty]{pretty()}} breaks.}
}}
\item{contour_var}{Character string identifying the variable to contour
by. Can be one of \code{"density"}, \code{"ndensity"}, or \code{"count"}. See the section
on computed variables for details.}
\item{lineend}{Line end style (round, butt, square).}
\item{linejoin}{Line join style (round, mitre, bevel).}
\item{linemitre}{Line mitre limit (number greater than 1).}
\item{na.rm}{If \code{FALSE}, the default, missing values are removed with
a warning. If \code{TRUE}, missing values are silently removed.}
\item{show.legend}{logical. Should this layer be included in the legends?
\code{NA}, the default, includes if any aesthetics are mapped.
\code{FALSE} never includes, and \code{TRUE} always includes.
It can also be a named logical vector to finely select the aesthetics to
display.}
\item{inherit.aes}{If \code{FALSE}, overrides the default aesthetics,
rather than combining with them. This is most useful for helper functions
that define both data and aesthetics and shouldn't inherit behaviour from
the default plot specification, e.g. \code{\link[=borders]{borders()}}.}
\item{geom, stat}{Use to override the default connection between
\code{geom_density_2d()} and \code{stat_density_2d()}.}
\item{contour}{If \code{TRUE}, contour the results of the 2d density
estimation.}
\item{n}{Number of grid points in each direction.}
\item{h}{Bandwidth (vector of length two). If \code{NULL}, estimated
using \code{\link[MASS:bandwidth.nrd]{MASS::bandwidth.nrd()}}.}
\item{adjust}{A multiplicative bandwidth adjustment to be used if 'h' is
'NULL'. This makes it possible to adjust the bandwidth while still
using the a bandwidth estimator. For example, \code{adjust = 1/2} means
use half of the default bandwidth.}
}
\description{
Perform a 2D kernel density estimation using \code{\link[MASS:kde2d]{MASS::kde2d()}} and
display the results with contours. This can be useful for dealing with
overplotting. This is a 2D version of \code{\link[=geom_density]{geom_density()}}. \code{geom_density_2d()}
draws contour lines, and \code{geom_density_2d_filled()} draws filled contour
bands.
}
\section{Aesthetics}{
\code{geom_density_2d()} understands the following aesthetics (required aesthetics are in bold):
\itemize{
\item \strong{\code{x}}
\item \strong{\code{y}}
\item \code{alpha}
\item \code{colour}
\item \code{group}
\item \code{linetype}
\item \code{size}
}
Learn more about setting these aesthetics in \code{vignette("ggplot2-specs")}.
\code{geom_density_2d_filled()} understands the following aesthetics (required aesthetics are in bold):
\itemize{
\item \strong{\code{x}}
\item \strong{\code{y}}
\item \code{alpha}
\item \code{colour}
\item \code{fill}
\item \code{group}
\item \code{linetype}
\item \code{size}
\item \code{subgroup}
}
Learn more about setting these aesthetics in \code{vignette("ggplot2-specs")}.
}
\section{Computed variables}{
\code{stat_density_2d()} and \code{stat_density_2d_filled()} compute different
variables depending on whether contouring is turned on or off. With
contouring off (\code{contour = FALSE}), both stats behave the same, and the
following variables are provided:
\describe{
\item{\code{density}}{The density estimate.}
\item{\code{ndensity}}{Density estimate, scaled to a maximum of 1.}
\item{\code{count}}{Density estimate * number of observations in group.}
\item{\code{n}}{Number of observations in each group.}
}
With contouring on (\code{contour = TRUE}), either \code{\link[=stat_contour]{stat_contour()}} or
\code{\link[=stat_contour_filled]{stat_contour_filled()}} (for contour lines or contour bands,
respectively) is run after the density estimate has been obtained,
and the computed variables are determined by these stats.
Contours are calculated for one of the three types of density estimates
obtained before contouring, \code{density}, \code{ndensity}, and \code{count}. Which
of those should be used is determined by the \code{contour_var} parameter.
}
\examples{
m <- ggplot(faithful, aes(x = eruptions, y = waiting)) +
geom_point() +
xlim(0.5, 6) +
ylim(40, 110)
# contour lines
m + geom_density_2d()
\donttest{
# contour bands
m + geom_density_2d_filled(alpha = 0.5)
# contour bands and contour lines
m + geom_density_2d_filled(alpha = 0.5) +
geom_density_2d(size = 0.25, colour = "black")
set.seed(4393)
dsmall <- diamonds[sample(nrow(diamonds), 1000), ]
d <- ggplot(dsmall, aes(x, y))
# If you map an aesthetic to a categorical variable, you will get a
# set of contours for each value of that variable
d + geom_density_2d(aes(colour = cut))
# If you draw filled contours across multiple facets, the same bins are
# used across all facets
d + geom_density_2d_filled() + facet_wrap(vars(cut))
# If you want to make sure the peak intensity is the same in each facet,
# use `contour_var = "ndensity"`.
d + geom_density_2d_filled(contour_var = "ndensity") + facet_wrap(vars(cut))
# If you want to scale intensity by the number of observations in each group,
# use `contour_var = "count"`.
d + geom_density_2d_filled(contour_var = "count") + facet_wrap(vars(cut))
# If we turn contouring off, we can use other geoms, such as tiles:
d + stat_density_2d(
geom = "raster",
aes(fill = after_stat(density)),
contour = FALSE
) + scale_fill_viridis_c()
# Or points:
d + stat_density_2d(geom = "point", aes(size = after_stat(density)), n = 20, contour = FALSE)
}
}
\seealso{
\code{\link[=geom_contour]{geom_contour()}}, \code{\link[=geom_contour_filled]{geom_contour_filled()}} for information about
how contours are drawn; \code{\link[=geom_bin2d]{geom_bin2d()}} for another way of dealing with
overplotting.
}