forked from lh3/minimap2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lchain.c
369 lines (349 loc) · 12.3 KB
/
lchain.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include <assert.h>
#include "mmpriv.h"
#include "kalloc.h"
#include "krmq.h"
static int64_t mg_chain_bk_end(int32_t max_drop, const mm128_t *z, const int32_t *f, const int64_t *p, int32_t *t, int64_t k)
{
int64_t i = z[k].y, end_i = -1, max_i = i;
int32_t max_s = 0;
if (i < 0 || t[i] != 0) return i;
do {
int32_t s;
t[i] = 2;
end_i = i = p[i];
s = i < 0? z[k].x : (int32_t)z[k].x - f[i];
if (s > max_s) max_s = s, max_i = i;
else if (max_s - s > max_drop) break;
} while (i >= 0 && t[i] == 0);
for (i = z[k].y; i >= 0 && i != end_i; i = p[i]) // reset modified t[]
t[i] = 0;
return max_i;
}
uint64_t *mg_chain_backtrack(void *km, int64_t n, const int32_t *f, const int64_t *p, int32_t *v, int32_t *t, int32_t min_cnt, int32_t min_sc, int32_t max_drop, int32_t *n_u_, int32_t *n_v_)
{
mm128_t *z;
uint64_t *u;
int64_t i, k, n_z, n_v;
int32_t n_u;
*n_u_ = *n_v_ = 0;
for (i = 0, n_z = 0; i < n; ++i) // precompute n_z
if (f[i] >= min_sc) ++n_z;
if (n_z == 0) return 0;
KMALLOC(km, z, n_z);
for (i = 0, k = 0; i < n; ++i) // populate z[]
if (f[i] >= min_sc) z[k].x = f[i], z[k++].y = i;
radix_sort_128x(z, z + n_z);
memset(t, 0, n * 4);
for (k = n_z - 1, n_v = n_u = 0; k >= 0; --k) { // precompute n_u
if (t[z[k].y] == 0) {
int64_t n_v0 = n_v, end_i;
int32_t sc;
end_i = mg_chain_bk_end(max_drop, z, f, p, t, k);
for (i = z[k].y; i != end_i; i = p[i])
++n_v, t[i] = 1;
sc = i < 0? z[k].x : (int32_t)z[k].x - f[i];
if (sc >= min_sc && n_v > n_v0 && n_v - n_v0 >= min_cnt)
++n_u;
else n_v = n_v0;
}
}
KMALLOC(km, u, n_u);
memset(t, 0, n * 4);
for (k = n_z - 1, n_v = n_u = 0; k >= 0; --k) { // populate u[]
if (t[z[k].y] == 0) {
int64_t n_v0 = n_v, end_i;
int32_t sc;
end_i = mg_chain_bk_end(max_drop, z, f, p, t, k);
for (i = z[k].y; i != end_i; i = p[i])
v[n_v++] = i, t[i] = 1;
sc = i < 0? z[k].x : (int32_t)z[k].x - f[i];
if (sc >= min_sc && n_v > n_v0 && n_v - n_v0 >= min_cnt)
u[n_u++] = (uint64_t)sc << 32 | (n_v - n_v0);
else n_v = n_v0;
}
}
kfree(km, z);
assert(n_v < INT32_MAX);
*n_u_ = n_u, *n_v_ = n_v;
return u;
}
static mm128_t *compact_a(void *km, int32_t n_u, uint64_t *u, int32_t n_v, int32_t *v, mm128_t *a)
{
mm128_t *b, *w;
uint64_t *u2;
int64_t i, j, k;
// write the result to b[]
KMALLOC(km, b, n_v);
for (i = 0, k = 0; i < n_u; ++i) {
int32_t k0 = k, ni = (int32_t)u[i];
for (j = 0; j < ni; ++j)
b[k++] = a[v[k0 + (ni - j - 1)]];
}
kfree(km, v);
// sort u[] and a[] by the target position, such that adjacent chains may be joined
KMALLOC(km, w, n_u);
for (i = k = 0; i < n_u; ++i) {
w[i].x = b[k].x, w[i].y = (uint64_t)k<<32|i;
k += (int32_t)u[i];
}
radix_sort_128x(w, w + n_u);
KMALLOC(km, u2, n_u);
for (i = k = 0; i < n_u; ++i) {
int32_t j = (int32_t)w[i].y, n = (int32_t)u[j];
u2[i] = u[j];
memcpy(&a[k], &b[w[i].y>>32], n * sizeof(mm128_t));
k += n;
}
memcpy(u, u2, n_u * 8);
memcpy(b, a, k * sizeof(mm128_t)); // write _a_ to _b_ and deallocate _a_ because _a_ is oversized, sometimes a lot
kfree(km, a); kfree(km, w); kfree(km, u2);
return b;
}
static inline int32_t comput_sc(const mm128_t *ai, const mm128_t *aj, int32_t max_dist_x, int32_t max_dist_y, int32_t bw, float chn_pen_gap, float chn_pen_skip, int is_cdna, int n_seg)
{
int32_t dq = (int32_t)ai->y - (int32_t)aj->y, dr, dd, dg, q_span, sc;
int32_t sidi = (ai->y & MM_SEED_SEG_MASK) >> MM_SEED_SEG_SHIFT;
int32_t sidj = (aj->y & MM_SEED_SEG_MASK) >> MM_SEED_SEG_SHIFT;
if (dq <= 0 || dq > max_dist_x) return INT32_MIN;
dr = (int32_t)(ai->x - aj->x);
if (sidi == sidj && (dr == 0 || dq > max_dist_y)) return INT32_MIN;
dd = dr > dq? dr - dq : dq - dr;
if (sidi == sidj && dd > bw) return INT32_MIN;
if (n_seg > 1 && !is_cdna && sidi == sidj && dr > max_dist_y) return INT32_MIN;
dg = dr < dq? dr : dq;
q_span = aj->y>>32&0xff;
sc = q_span < dg? q_span : dg;
if (dd || dg > q_span) {
float lin_pen, log_pen;
lin_pen = chn_pen_gap * (float)dd + chn_pen_skip * (float)dg;
log_pen = dd >= 1? mg_log2(dd + 1) : 0.0f; // mg_log2() only works for dd>=2
if (is_cdna || sidi != sidj) {
if (sidi != sidj && dr == 0) ++sc; // possibly due to overlapping paired ends; give a minor bonus
else if (dr > dq || sidi != sidj) sc -= (int)(lin_pen < log_pen? lin_pen : log_pen); // deletion or jump between paired ends
else sc -= (int)(lin_pen + .5f * log_pen);
} else sc -= (int)(lin_pen + .5f * log_pen);
}
return sc;
}
/* Input:
* a[].x: tid<<33 | rev<<32 | tpos
* a[].y: flags<<40 | q_span<<32 | q_pos
* Output:
* n_u: #chains
* u[]: score<<32 | #anchors (sum of lower 32 bits of u[] is the returned length of a[])
* input a[] is deallocated on return
*/
mm128_t *mg_lchain_dp(int max_dist_x, int max_dist_y, int bw, int max_skip, int max_iter, int min_cnt, int min_sc, float chn_pen_gap, float chn_pen_skip,
int is_cdna, int n_seg, int64_t n, mm128_t *a, int *n_u_, uint64_t **_u, void *km)
{ // TODO: make sure this works when n has more than 32 bits
int32_t *f, *t, *v, n_u, n_v, mmax_f = 0, max_drop = bw;
int64_t *p, i, j, max_ii, st = 0, n_iter = 0;
uint64_t *u;
if (_u) *_u = 0, *n_u_ = 0;
if (n == 0 || a == 0) {
kfree(km, a);
return 0;
}
if (max_dist_x < bw) max_dist_x = bw;
if (max_dist_y < bw && !is_cdna) max_dist_y = bw;
if (is_cdna) max_drop = INT32_MAX;
KMALLOC(km, p, n);
KMALLOC(km, f, n);
KMALLOC(km, v, n);
KCALLOC(km, t, n);
// fill the score and backtrack arrays
for (i = 0, max_ii = -1; i < n; ++i) {
int64_t max_j = -1, end_j;
int32_t max_f = a[i].y>>32&0xff, n_skip = 0;
while (st < i && (a[i].x>>32 != a[st].x>>32 || a[i].x > a[st].x + max_dist_x)) ++st;
if (i - st > max_iter) st = i - max_iter;
for (j = i - 1; j >= st; --j) {
int32_t sc;
sc = comput_sc(&a[i], &a[j], max_dist_x, max_dist_y, bw, chn_pen_gap, chn_pen_skip, is_cdna, n_seg);
++n_iter;
if (sc == INT32_MIN) continue;
sc += f[j];
if (sc > max_f) {
max_f = sc, max_j = j;
if (n_skip > 0) --n_skip;
} else if (t[j] == (int32_t)i) {
if (++n_skip > max_skip)
break;
}
if (p[j] >= 0) t[p[j]] = i;
}
end_j = j;
if (max_ii < 0 || a[i].x - a[max_ii].x > (int64_t)max_dist_x) {
int32_t max = INT32_MIN;
max_ii = -1;
for (j = i - 1; j >= st; --j)
if (max < f[j]) max = f[j], max_ii = j;
}
if (max_ii >= 0 && max_ii < end_j) {
int32_t tmp;
tmp = comput_sc(&a[i], &a[max_ii], max_dist_x, max_dist_y, bw, chn_pen_gap, chn_pen_skip, is_cdna, n_seg);
if (tmp != INT32_MIN && max_f < tmp + f[max_ii])
max_f = tmp + f[max_ii], max_j = max_ii;
}
f[i] = max_f, p[i] = max_j;
v[i] = max_j >= 0 && v[max_j] > max_f? v[max_j] : max_f; // v[] keeps the peak score up to i; f[] is the score ending at i, not always the peak
if (max_ii < 0 || (a[i].x - a[max_ii].x <= (int64_t)max_dist_x && f[max_ii] < f[i]))
max_ii = i;
if (mmax_f < max_f) mmax_f = max_f;
}
u = mg_chain_backtrack(km, n, f, p, v, t, min_cnt, min_sc, max_drop, &n_u, &n_v);
*n_u_ = n_u, *_u = u; // NB: note that u[] may not be sorted by score here
kfree(km, p); kfree(km, f); kfree(km, t);
if (n_u == 0) {
kfree(km, a); kfree(km, v);
return 0;
}
return compact_a(km, n_u, u, n_v, v, a);
}
typedef struct lc_elem_s {
int32_t y;
int64_t i;
double pri;
KRMQ_HEAD(struct lc_elem_s) head;
} lc_elem_t;
#define lc_elem_cmp(a, b) ((a)->y < (b)->y? -1 : (a)->y > (b)->y? 1 : ((a)->i > (b)->i) - ((a)->i < (b)->i))
#define lc_elem_lt2(a, b) ((a)->pri < (b)->pri)
KRMQ_INIT(lc_elem, lc_elem_t, head, lc_elem_cmp, lc_elem_lt2)
KALLOC_POOL_INIT(rmq, lc_elem_t)
static inline int32_t comput_sc_simple(const mm128_t *ai, const mm128_t *aj, float chn_pen_gap, float chn_pen_skip, int32_t *exact, int32_t *width)
{
int32_t dq = (int32_t)ai->y - (int32_t)aj->y, dr, dd, dg, q_span, sc;
dr = (int32_t)(ai->x - aj->x);
*width = dd = dr > dq? dr - dq : dq - dr;
dg = dr < dq? dr : dq;
q_span = aj->y>>32&0xff;
sc = q_span < dg? q_span : dg;
if (exact) *exact = (dd == 0 && dg <= q_span);
if (dd || dq > q_span) {
float lin_pen, log_pen;
lin_pen = chn_pen_gap * (float)dd + chn_pen_skip * (float)dg;
log_pen = dd >= 1? mg_log2(dd + 1) : 0.0f; // mg_log2() only works for dd>=2
sc -= (int)(lin_pen + .5f * log_pen);
}
return sc;
}
mm128_t *mg_lchain_rmq(int max_dist, int max_dist_inner, int bw, int max_chn_skip, int cap_rmq_size, int min_cnt, int min_sc, float chn_pen_gap, float chn_pen_skip,
int64_t n, mm128_t *a, int *n_u_, uint64_t **_u, void *km)
{
int32_t *f,*t, *v, n_u, n_v, mmax_f = 0, max_rmq_size = 0, max_drop = bw;
int64_t *p, i, i0, st = 0, st_inner = 0, n_iter = 0;
uint64_t *u;
lc_elem_t *root = 0, *root_inner = 0;
void *mem_mp = 0;
kmp_rmq_t *mp;
if (_u) *_u = 0, *n_u_ = 0;
if (n == 0 || a == 0) {
kfree(km, a);
return 0;
}
if (max_dist < bw) max_dist = bw;
if (max_dist_inner <= 0 || max_dist_inner >= max_dist) max_dist_inner = 0;
KMALLOC(km, p, n);
KMALLOC(km, f, n);
KCALLOC(km, t, n);
KMALLOC(km, v, n);
mem_mp = km_init2(km, 0x10000);
mp = kmp_init_rmq(mem_mp);
// fill the score and backtrack arrays
for (i = i0 = 0; i < n; ++i) {
int64_t max_j = -1;
int32_t q_span = a[i].y>>32&0xff, max_f = q_span;
lc_elem_t s, *q, *r, lo, hi;
// add in-range anchors
if (i0 < i && a[i0].x != a[i].x) {
int64_t j;
for (j = i0; j < i; ++j) {
q = kmp_alloc_rmq(mp);
q->y = (int32_t)a[j].y, q->i = j, q->pri = -(f[j] + 0.5 * chn_pen_gap * ((int32_t)a[j].x + (int32_t)a[j].y));
krmq_insert(lc_elem, &root, q, 0);
if (max_dist_inner > 0) {
r = kmp_alloc_rmq(mp);
*r = *q;
krmq_insert(lc_elem, &root_inner, r, 0);
}
}
i0 = i;
}
// get rid of active chains out of range
while (st < i && (a[i].x>>32 != a[st].x>>32 || a[i].x > a[st].x + max_dist || krmq_size(head, root) > cap_rmq_size)) {
s.y = (int32_t)a[st].y, s.i = st;
if ((q = krmq_find(lc_elem, root, &s, 0)) != 0) {
q = krmq_erase(lc_elem, &root, q, 0);
kmp_free_rmq(mp, q);
}
++st;
}
if (max_dist_inner > 0) { // similar to the block above, but applied to the inner tree
while (st_inner < i && (a[i].x>>32 != a[st_inner].x>>32 || a[i].x > a[st_inner].x + max_dist_inner || krmq_size(head, root_inner) > cap_rmq_size)) {
s.y = (int32_t)a[st_inner].y, s.i = st_inner;
if ((q = krmq_find(lc_elem, root_inner, &s, 0)) != 0) {
q = krmq_erase(lc_elem, &root_inner, q, 0);
kmp_free_rmq(mp, q);
}
++st_inner;
}
}
// RMQ
lo.i = INT32_MAX, lo.y = (int32_t)a[i].y - max_dist;
hi.i = 0, hi.y = (int32_t)a[i].y;
if ((q = krmq_rmq(lc_elem, root, &lo, &hi)) != 0) {
int32_t sc, exact, width, n_skip = 0;
int64_t j = q->i;
assert(q->y >= lo.y && q->y <= hi.y);
sc = f[j] + comput_sc_simple(&a[i], &a[j], chn_pen_gap, chn_pen_skip, &exact, &width);
if (width <= bw && sc > max_f) max_f = sc, max_j = j;
if (!exact && root_inner && (int32_t)a[i].y > 0) {
lc_elem_t *lo, *hi;
s.y = (int32_t)a[i].y - 1, s.i = n;
krmq_interval(lc_elem, root_inner, &s, &lo, &hi);
if (lo) {
const lc_elem_t *q;
int32_t width, n_rmq_iter = 0;
krmq_itr_t(lc_elem) itr;
krmq_itr_find(lc_elem, root_inner, lo, &itr);
while ((q = krmq_at(&itr)) != 0) {
if (q->y < (int32_t)a[i].y - max_dist_inner) break;
++n_rmq_iter;
j = q->i;
sc = f[j] + comput_sc_simple(&a[i], &a[j], chn_pen_gap, chn_pen_skip, 0, &width);
if (width <= bw) {
if (sc > max_f) {
max_f = sc, max_j = j;
if (n_skip > 0) --n_skip;
} else if (t[j] == (int32_t)i) {
if (++n_skip > max_chn_skip)
break;
}
if (p[j] >= 0) t[p[j]] = i;
}
if (!krmq_itr_prev(lc_elem, &itr)) break;
}
n_iter += n_rmq_iter;
}
}
}
// set max
assert(max_j < 0 || (a[max_j].x < a[i].x && (int32_t)a[max_j].y < (int32_t)a[i].y));
f[i] = max_f, p[i] = max_j;
v[i] = max_j >= 0 && v[max_j] > max_f? v[max_j] : max_f; // v[] keeps the peak score up to i; f[] is the score ending at i, not always the peak
if (mmax_f < max_f) mmax_f = max_f;
if (max_rmq_size < krmq_size(head, root)) max_rmq_size = krmq_size(head, root);
}
km_destroy(mem_mp);
u = mg_chain_backtrack(km, n, f, p, v, t, min_cnt, min_sc, max_drop, &n_u, &n_v);
*n_u_ = n_u, *_u = u; // NB: note that u[] may not be sorted by score here
kfree(km, p); kfree(km, f); kfree(km, t);
if (n_u == 0) {
kfree(km, a); kfree(km, v);
return 0;
}
return compact_a(km, n_u, u, n_v, v, a);
}