-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPLIGHT_Iterative.py
527 lines (469 loc) · 23.8 KB
/
PLIGHT_Iterative.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
import sys
import os
import subprocess
import numpy as np
import math
import time
import random
from copy import deepcopy
import argparse
import multiprocessing as mp
from functools import partial
import gzip
import mmap
from collections import Counter
#*****************************************************************
#*****************************************************************
def update_func(pmat, lhaps, delta, tolerance, index_tuple):
localp = deepcopy(pmat)
i = index_tuple[0]
j = index_tuple[1]
localp[int(i*(i+1)/2):int((i+1)*(i+2)/2)] += delta
colargs = [(k+1)*k/2 + j for k in range(j,lhaps,1)]
for k in colargs:
localp[int(k)] += delta
maxval = np.amax(localp)
return((maxval, np.argwhere(localp >= maxval+tolerance*maxval) ) )
#*****************************************************************
#*****************************************************************
def transprob_unbiased(happop, localrate):
return((np.exp(-localrate/happop) + ((1-np.exp(-localrate/happop))/happop), ((1-np.exp(-localrate/happop))/happop)))
#*****************************************************************
#*****************************************************************
def emissionprob(scaledmutrate):
emissionmat = np.array([[0.0 for j in range(3)] for i in range(3)])
#emissionmat[observed genotype][combined reference genotype]
emissionmat[0,0] = (1-scaledmutrate)**2
emissionmat[2,2] = (1-scaledmutrate)**2
emissionmat[0,1] = scaledmutrate*(1-scaledmutrate)
emissionmat[2,1] = scaledmutrate*(1-scaledmutrate)
emissionmat[0,2] = scaledmutrate**2
emissionmat[2,0] = scaledmutrate**2
emissionmat[1,0] = 2*scaledmutrate*(1-scaledmutrate)
emissionmat[1,1] = scaledmutrate**2 + (1-scaledmutrate)**2
emissionmat[1,2] = 2*scaledmutrate*(1-scaledmutrate)
return(emissionmat)
#*****************************************************************
#*****************************************************************
def row1Dto2D(k, totvals):
return(int(-0.5+0.5*math.sqrt(1+8*k)))
#*****************************************************************
#*****************************************************************
def map1Dto2D(k, totvals):
rowID = row1Dto2D(k,totvals)
colID = k - rowID*(rowID+1)/2
return((rowID,colID))
#*****************************************************************
#*****************************************************************
def generate_recomb(prefix, effpop, chromID, recombrate, obssamplefile):
infile = open(obssamplefile)
snplist = []
for line in infile:
terms = line.strip().split("\t")
snplist.append(int(terms[1]))
snplist = sorted(snplist)
infile.close()
distlist = [(snplist[snpindex] - snplist[snpindex-1])/(10.0**6) for snpindex in range(1,len(snplist),1)]
recombfile = prefix+"_"+chromID+"_Linear_distance_recombination.tsv"
outfile = open(recombfile,'w')
for dist in distlist:
outfile.write(str(4*effpop*dist*recombrate)+"\n")
outfile.close()
return(recombfile)
#*****************************************************************
#*****************************************************************
def process_SNPs_position_specific(dsfilename, filename, observedsample, refpop):
#Extract the SNP IDs from the observed sample
prefilterds = ".".join(dsfilename.split(".")[:-1])+".prefiltered.txt"
bcfcommand = "bcftools view -Ov -R "+observedsample+" "+filename+" | awk '$1 ~ /CHROM/ || $1 !~ /##/' > "+prefilterds
subprocess.call(bcfcommand,shell=True)
obsmatchdict = {}
mutratedict = {}
obsfile = open(observedsample,'r')
for line in obsfile:
terms = line.strip().split("\t")
finmatch = "_".join([terms[0],terms[1],terms[3]])
obsmatchdict[finmatch] = terms[4]
mutratedict[finmatch] = (terms[5],terms[6])
obsfile.close()
####Remove Multi-Allelic SNPs and deletions/insertions
obsgtypelist = []
mutratelist = []
snplist = []
infile = open(prefilterds)
outfile = open(dsfilename,'w')
count=0
nsnps = 0
for line in infile:
terms = line.strip().split("\t")
finmatch = "_".join([terms[0],terms[1],terms[4]])
if count == 0:
outfile.write(line)
terms = line.strip().split("\t")
samplelistprime = terms[9:]
elif (len(terms[4].split(","))==1) and ("VT=SNP" in terms[7]) and (finmatch in obsmatchdict.keys()):
outfile.write(line)
snplist.append("chr"+finmatch)
nsnps += 1
obsgtypelist.append(obsmatchdict[finmatch])
mutratelist.append(mutratedict[finmatch])
count += 1
infile.close()
outfile.close()
###Clean-up for specific pathology in Sample IDs for 1kGenomes vcf files
sampletemp = []
for item in samplelistprime:
if len(item)==14:
sampletemp.append(item[:7])
sampletemp.append(item[7:])
else:
sampletemp.append(item)
samplelist = [sampletemp[int(i/2)]+"_A" if i%2 ==0 else sampletemp[int((i-1)/2)]+"_B" for i in range(2*len(sampletemp))][:2*refpop]
return((samplelist,obsgtypelist,mutratelist,nsnps,snplist))
#*****************************************************************
#*****************************************************************
def process_SNPs(dsfilename, filename, observedsample, refpop):
#Extract the SNP IDs from the observed sample
prefilterds = ".".join(dsfilename.split(".")[:-1])+".prefiltered.txt"
bcfcommand = "bcftools view -Ov -R "+observedsample+" "+filename+" | awk '$1 ~ /CHROM/ || $1 !~ /##/' > "+prefilterds
subprocess.call(bcfcommand,shell=True)
obsmatchdict = {}
obsfile = open(observedsample,'r')
for line in obsfile:
terms = line.strip().split("\t")
obsmatchdict["_".join([terms[0],terms[1],terms[3]])] = terms[4]
obsfile.close()
####Remove Multi-Allelic SNPs and deletions/insertions
obsgtypelist = []
snplist = []
infile = open(prefilterds)
outfile = open(dsfilename,'w')
count=0
nsnps = 0
for line in infile:
terms = line.strip().split("\t")
finmatch = "_".join([terms[0],terms[1],terms[4]])
if count == 0:
outfile.write(line)
terms = line.strip().split("\t")
samplelistprime = terms[9:]
elif (len(terms[4].split(","))==1) and ("VT=SNP" in terms[7]) and (finmatch in obsmatchdict.keys()):
outfile.write(line)
snplist.append("chr"+finmatch)
nsnps += 1
obsgtypelist.append(obsmatchdict[finmatch])
count += 1
infile.close()
outfile.close()
###Clean-up for specific pathology in Sample IDs for 1kGenomes vcf files
sampletemp = []
for item in samplelistprime:
if len(item)==14:
sampletemp.append(item[:7])
sampletemp.append(item[7:])
else:
sampletemp.append(item)
samplelist = [sampletemp[int(i/2)]+"_A" if i%2 ==0 else sampletemp[int((i-1)/2)]+"_B" for i in range(2*len(sampletemp))][:2*refpop]
return((samplelist,obsgtypelist,nsnps,snplist))
#*****************************************************************
#*****************************************************************
def selection_func(samplelist, subgroup):
sampleindices = list(range(len(samplelist)))
random.shuffle(sampleindices)
select_sample = [sampleindices[i*subgroup:(i+1)*subgroup] for i in range((len(sampleindices)+subgroup-1) // subgroup)]
return(select_sample)
#*****************************************************************
#*****************************************************************
def read_backtrace(prefix, btfilename, termbtcollapse, lhaps, samplelist, samplelisttot, snplist, chromID, writeflag):
besthaps = []
infile = open(btfilename,'rb')
mm = mmap.mmap(infile.fileno(), 0, access = mmap.ACCESS_READ)
gzfile = gzip.GzipFile(mode="r", fileobj=mm)
trajfile = prefix+"_"+chromID + "_Best_trajectories.tsv"
seqindex = termbtcollapse.split(";")
seq2D = [map1Dto2D(int(item),lhaps) for item in seqindex]
besthaps.extend(seq2D)
if(writeflag=="final"):
outfile = open(trajfile,'w')
outfile.write(snplist[-1]+"\t"+"\t".join([samplelist[int(item[0])]+"_"+samplelist[int(item[1])] for item in seq2D])+"\n")
for snpindex in range(len(snplist)-1,0,-1):
seqindexdict = {}
if(writeflag=="final"):
outfile.write(snplist[snpindex-1]+"\t")
gzfile.seek(0)
for lindex in range(2*(snpindex-1)+1):
gzfile.readline()
btflat = gzfile.readline().strip().split(b",")
btflat = np.array([bitem.decode('utf-8') for bitem in btflat])
seqlist = []
for poss in seqindex:
poss2D = map1Dto2D(int(poss),lhaps)
posskey = samplelist[int(poss2D[0])]+"_"+samplelist[int(poss2D[1])]
seq = btflat[int(poss)]
seq2D = [map1Dto2D(int(item.split(".")[0]),lhaps) for item in seq.split(";")]
besthaps.extend(seq2D)
besthaps = list(set(besthaps))
seqkey = ";".join([samplelist[int(item[0])]+"_"+samplelist[int(item[1])] for item in seq2D])
seqindexdict[posskey] = seqkey
seqlist += seq.split(";")
seqindex = list(set(seqlist))
if(writeflag=="final"):
for seqpair in seqindexdict.items():
outfile.write(":".join(seqpair)+"\t")
outfile.write("\n")
if(writeflag=="final"):
outfile.close()
infile.close()
besthaps = list(set([samplelist[int(item)] for item2D in besthaps for item in item2D]))
besthapindices = [i for i, val in enumerate(samplelisttot) if val in besthaps]
rmcall = f"rm {btfilename}"
subprocess.call(rmcall,shell=True)
return(besthapindices)
#*****************************************************************
#*****************************************************************
def run_hmm_iterative(prefix, dsfilename, chromID, refpop, recombfile, scaledmutrate, tolerance, nsnps, obsgtypelist, mutratelist, numproc, en_select_sample):
indep_p = 0
geno_p = 0
select_index = en_select_sample[0]
select_sample = en_select_sample[1]
emissionmat = emissionprob(scaledmutrate)
lowerlimit = sys.float_info.min
genposs = ["0","1"]
#EXTRACT the haplotypes of all the individuals from 1kGenomes
btfilename = prefix+"_"+str(select_index)+"_"+chromID+"_BackTrace_Sequences.txt.gz"
btfile = gzip.open(btfilename,'wb')
infile = open(dsfilename,'r')
inrecomb = open(recombfile, 'r')
mm = mmap.mmap(infile.fileno(), 0, access = mmap.ACCESS_READ)
mm.seek(0)
for si in range(-1,nsnps,1):
flag = 0
terms = mm.readline().strip().split(b"\t")
terms = [bitem.decode('utf-8') for bitem in terms]
if(terms[0][:6]=="#CHROM"):
samplelistprime = terms[9:]
###Clean-up for specific pathology in Sample IDs for 1kGenomes vcf files
sampletemp = []
for item in samplelistprime:
if len(item)==14:
sampletemp.append(item[:7])
sampletemp.append(item[7:])
else:
sampletemp.append(item)
samplelisttot = [sampletemp[int(i/2)]+"_A" if i%2 ==0 else sampletemp[int((i-1)/2)]+"_B" for i in range(2*len(sampletemp))][:2*refpop]
samplelist = [samplelisttot[ind] for ind in select_sample]
indexlist = [(i,j) for i in range(len(samplelist)) for j in range(0,i+1,1)]
elif terms[0][0]!="#":
if (si>0):
localrate = float(inrecomb.readline())
transmat = transprob_unbiased(2*refpop,localrate)
transmat = [math.log(lowerlimit) if item == 0 else math.log(item) for item in transmat]
ton = transmat[0]
toff = transmat[1]
obsgtype = obsgtypelist[si]
if mutratelist == None:
emslice = [lowerlimit if item==0 else item for item in emissionmat[int(obsgtype)]]
em0 = emslice[0]
em1 = emslice[1]
em2 = emslice[2]
else:
mutrate = mutratelist[si]
mutation_tuples = [(int(item.split(":")[0]),float(item.split(":")[1])) for item in mutrate]
sumprob = sum([tup[1] for tup in mutation_tuples])
mutation_tuples.append((int(obsgtype), 1-sumprob))
mutation_tuples.sort(key=lambda x: x[0])
emslice = [item[1] for item in mutation_tuples]
emslice = [lowerlimit if item==0 else item for item in emslice]
em0 = emslice[0]
em1 = emslice[1]
em2 = emslice[2]
freqs = terms[7].split(";")
allelefreqprime = [freq.split("=")[1] for freq in freqs if (freq[:3]=="AF=")][0]
if len(allelefreqprime.split(","))>1:
allelefreq = float(allelefreqprime.split(",")[0])
else:
allelefreq = float(allelefreqprime)
p1 = allelefreq
p0 = 1.0-p1
haps = terms[9:refpop+9]
haps = [indhap+"|"+indhap if len(indhap.split("|")) == 1 else indhap for indhap in haps]
haps = [f"{indhap.split(':')[0].split('/')[0]}|{indhap.split(':')[0].split('/')[1]}" if "/" in indhap.split(':')[0] else indhap.split(':')[0] for indhap in haps]
gens = [int(indhap.split("|")[0]) + int(indhap.split("|")[1]) for indhap in haps if "." not in indhap.split("|")]
gen_counter = Counter(gens)
gen_freq = [gen_counter[0]/float(len(gens)),gen_counter[1]/float(len(gens)),gen_counter[2]/float(len(gens))]
geno_p += np.log(gen_freq[int(obsgtype)])
haps = [item2 for indhap in haps for item in indhap.split(":")[0].split("|") for item2 in item.split("/")]
haps = [haps[ind] for ind in select_sample]
if int(obsgtype) == 2:
SNP_prob = np.log(p1*p1)
elif int(obsgtype) == 1:
SNP_prob = np.log(2*p1*p0)
elif int(obsgtype) == 0:
SNP_prob = np.log(p0*p0)
indep_p += SNP_prob
lhaps = len(haps)
#Explicit calculation of emission probabilities for all possibilities
haps0 = np.array([i for i in range(lhaps) if haps[i]=="0"], dtype = np.uint32)
haps1 = np.array([i for i in range(lhaps) if haps[i]=="1"], dtype = np.uint32)
hapsm = np.array([i for i in range(lhaps) if (haps[i] != "0") and (haps[i] != "1")], dtype = np.uint32)
if len(hapsm) == 0:
flag = 1
if flag != 1:
emmm = em0*(p0**2) + em2*(p1**2) + em1*2*(p0*p1)
emm0 = em0*p0 + em1*p1
emm1 = em1*p0 + em2*p1
pvec = np.array([math.log(lowerlimit) for i in range(lhaps) for j in range(0,i+1,1)], dtype = np.float32)
for i in haps0:
for j in haps0:
if(j<=i):
pvec[int(i*(i+1)/2+j)] = math.log(em0)
for j in haps1:
if(j<=i):
pvec[int(i*(i+1)/2+j)] = math.log(em1)
for j in hapsm:
if(j<=i):
pvec[int(i*(i+1)/2+j)] = math.log(emm0)
for i in haps1:
for j in haps0:
if(j<=i):
pvec[int(i*(i+1)/2+j)] = math.log(em1)
for j in haps1:
if(j<=i):
pvec[int(i*(i+1)/2+j)] = math.log(em2)
for j in hapsm:
if(j<=i):
pvec[int(i*(i+1)/2+j)] = math.log(emm1)
for i in hapsm:
for j in haps0:
if(j<=i):
pvec[int(i*(i+1)/2+j)] = math.log(emm0)
for j in haps1:
if(j<=i):
pvec[int(i*(i+1)/2+j)] = math.log(emm1)
for j in hapsm:
if(j<=i):
pvec[int(i*(i+1)/2+j)] = math.log(emmm)
if si == 0:
reflog = -2*math.log(lhaps)
pvec += reflog
else:
pmat = prevpvec + 2*toff
delta = ton-toff
pool = mp.Pool(processes=numproc)
fix_update=partial(update_func, pmat, lhaps, delta, tolerance)
returnlist = pool.map(fix_update, indexlist)
pool.close()
pool.join()
totpvec = np.array([item[0] for item in returnlist],dtype = np.float32)
btvec = [item[1] for item in returnlist]
pvec += totpvec
btflat = [";".join(np.ndarray.flatten(item).astype(str)) for item in btvec]
str1 = "SNP_"+str(si)+"\n"
btfile.write(str1.encode('utf-8'))
str1 = ",".join(btflat) + "\n"
btfile.write(str1.encode('utf-8'))
prevpvec = pvec
#Termination step
pmat = np.array(pvec)
termp = np.amax(pmat)
termbt = np.argwhere(pmat >= termp+tolerance*termp)
termbtcollapse = ";".join(np.ndarray.flatten(termbt).astype(str))
infile.close()
inrecomb.close()
btfile.close()
sum_p = termp + np.log(np.sum(np.exp(-termp + pmat)))
return geno_p, sum_p, indep_p, termp, btfilename, termbtcollapse, lhaps, samplelist, samplelisttot, chromID
#*****************************************************************
#*****************************************************************
def iterative_process(prefix, dsfilename, filename, observedsample, refpop, subgroup, chromID, recombfile, scaledmutrate, tolerance, numproc, niter, posspecific):
if posspecific=="True":
(samplelist,obsgtypelist,mutratelist,nsnps,snplist) = process_SNPs_position_specific(dsfilename, filename, observedsample, refpop)
else:
(samplelist,obsgtypelist,nsnps,snplist) = process_SNPs(dsfilename, filename, observedsample, refpop)
mutratelist = None
writeflag = "init"
count = 0
bestlist = samplelist[:2*refpop]
prevbest = samplelist
while len(bestlist)>subgroup:
toplist = []
for iter in range(niter):
if count == 0:
select_sample = selection_func(samplelist, subgroup)
else:
random.shuffle(bestlist)
select_sample = [bestlist[i*subgroup:(i+1)*subgroup] for i in range((len(bestlist)+subgroup-1) // subgroup)]
for en_select_sample in enumerate(select_sample):
geno_p, sum_p, indep_p, termp, btfilename, termbtcollapse, lhaps, samplelist, samplelisttot, chromID = run_hmm_iterative(prefix, dsfilename, chromID, refpop, recombfile, scaledmutrate, tolerance, nsnps, obsgtypelist, mutratelist, numproc, en_select_sample)
returnlist = read_backtrace(prefix, btfilename, termbtcollapse, lhaps, samplelist, samplelisttot, snplist, chromID, writeflag)
toplist.extend(returnlist)
bestlist = list(set(toplist))
if (set(prevbest) == set(bestlist)) or (len(bestlist) > len(prevbest)):
break
prevbest = bestlist
count += 1
writeflag = "final"
geno_p, sum_p, indep_p, termp, btfilename, termbtcollapse, lhaps, samplelist, samplelisttot, chromID = run_hmm_iterative(prefix, dsfilename, chromID, refpop, recombfile, scaledmutrate, tolerance, nsnps, obsgtypelist, mutratelist, numproc, (0,bestlist))
read_backtrace(prefix, btfilename, termbtcollapse, lhaps, samplelist, samplelisttot, snplist, chromID, writeflag)
outfile = open(prefix+"_"+str(chromID)+"_Probability_value.txt",'w')
outfile.write("Log-Probability value of best-fit trajectories = "+str(termp)+"\n")
outfile.write("log(Joint Probability of SNPs) = "+str(sum_p)+"\n")
outfile.write(f"log(Product of Independent HWE Probabilities of SNP Genotypes) = {indep_p}\n")
outfile.write(f"log(Product of Independent Database-specific Genotype Probabilities of SNP Genotypes) = {geno_p}\n")
outfile.close()
return
#*****************************************************************
#*****************************************************************
if __name__=="__main__":
parser = argparse.ArgumentParser(description='Identify closest related reference haplotypes')
parser.add_argument('-c','--chromosomefile', required=True, help='Chromosome file name')
parser.add_argument('-O','--observedsample', required=True, help='Observed Sample Genotype File')
parser.add_argument('-I','--chromosomeID', required=False, help='Chromosome ID')
parser.add_argument('-m','--metadata', required=False, help='Metadata file with ancestry information', default='integrated_call_samples_v3.20130502.ALL.panel')
parser.add_argument('-F','--genfolder', required=False, help='Genotype folder', default='Genotypes/')
parser.add_argument('-M','--thetamutationrate', required=False, type = float, help='Theta (Coalescent) Mutation rate')
parser.add_argument('-L','--lambdamutationrate', required=False, type = float, help='Lambda (direct error) Mutation rate')
parser.add_argument('-e','--effpop', required=False, type = int, help='Effective population', default=11418)
parser.add_argument('-r','--refpop', required=False, type = int, help='Reference population', default=2504)
parser.add_argument('-b','--recombrate', required=False, type = float, help='Recombination rate in cM/Mb (if /distance/ option is chosen)', default=0.5)
parser.add_argument('-s','--recombswitch', required=False, choices = ['distance', 'custom'], help='Recombination Model Switch (distance = simple linear increase of recombination rate with distance, custom = alternative model)', default='distance')
parser.add_argument('-f','--recombfile', required=False, help='Custom Recombination Model File')
parser.add_argument('-t','--tolerance', required=False, type = float, help='Fraction of maximum value used as allowance for inclusion of a path', default=0.01)
parser.add_argument('-C','--currdir', required=False, help='Current working directory', default='./')
parser.add_argument('--numproc', required=False, type = int, help='Number of processes for parallelization', default=1)
parser.add_argument('--subgroup', required=False, help='Number of haplotypes in each iterative scheme subgroup', default=300, type=int)
parser.add_argument('--niter', required=False, help='Number of iterations of bootstrapping process', default=20, type=int)
parser.add_argument('--posspecific', required=False, help='Position-specific mutation rates included in observation file? (True/False)', default="False")
parser.add_argument('--prefix', required=False, help='String prefix to append to output Best_trajectories file, in addition to chromosome number', default="")
args = parser.parse_args()
chromfile = args.chromosomefile
chromID = args.chromosomeID
metadata = args.metadata
genfolder = args.genfolder
currdir = args.currdir
tolerance = args.tolerance
effpop = args.effpop
refpop = args.refpop
numproc = args.numproc
recombrate = 0.01*args.recombrate
filename = genfolder + chromfile
observedsample = args.observedsample
subgroup = args.subgroup
niter = args.niter
posspecific = args.posspecific
prefix = args.prefix
dsfilename = prefix+"_"+chromID+"_SNP_Haplotypes.txt"
if (args.thetamutationrate is None) and (args.lambdamutationrate is None):
mutrate = (sum(1.0/i for i in range(1,2*refpop-1)))**(-1)
scaledmutrate = 0.5*mutrate/(mutrate + 2*refpop)
elif (args.thetamutationrate is None):
scaledmutrate = args.lambdamutationrate
elif (args.lambdamutationrate is None):
mutrate = args.thetamutationrate
scaledmutrate = 0.5*mutrate/(mutrate + 2*refpop)
recombswitch = args.recombswitch
if recombswitch == 'custom':
recombfile = args.recombfile
else:
recombfile = generate_recomb(prefix, effpop, chromID, recombrate, observedsample)
iterative_process(prefix, dsfilename, filename, observedsample, refpop, subgroup, chromID, recombfile, scaledmutrate, tolerance, numproc, niter, posspecific)