forked from wy1iu/SphereNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
spherenet.py
158 lines (125 loc) · 6.64 KB
/
spherenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import tensorflow as tf
import numpy as numpy
class SphereNet():
def get_conv_filter(self, shape, reg, stddev):
init = tf.random_normal_initializer(stddev=stddev)
if reg:
regu = tf.contrib.layers.l2_regularizer(self.wd)
filt = tf.get_variable('filter', shape, initializer=init,regularizer=regu)
else:
filt = tf.get_variable('filter', shape, initializer=init)
return filt
def get_bias(self, dim, init_bias, name):
with tf.variable_scope(name):
init = tf.constant_initializer(init_bias)
regu = tf.contrib.layers.l2_regularizer(self.wd)
bias = tf.get_variable('bias', dim, initializer=init, regularizer=regu)
return bias
def batch_norm(self, x, n_out, phase_train):
with tf.variable_scope('bn'):
gamma = self.get_bias(n_out, 1.0, 'gamma')
beta = self.get_bias(n_out, 0.0, 'beta')
batch_mean, batch_var = tf.nn.moments(x, [0,1,2], name='moments')
ema = tf.train.ExponentialMovingAverage(decay=0.999)
def mean_var_with_update():
ema_apply_op = ema.apply([batch_mean, batch_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
mean, var = tf.cond(phase_train,
mean_var_with_update,
lambda: (ema.average(batch_mean), ema.average(batch_var)))
return tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-3)
def _max_pool(self, bottom, name):
return tf.nn.max_pool(bottom, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
padding='SAME', name=name)
def _get_filter_norm(self, filt):
eps = 1e-4
return tf.sqrt(tf.reduce_sum(filt*filt, [0, 1, 2], keep_dims=True)+eps)
def _get_input_norm(self, bottom, ksize, pad):
eps = 1e-4
shape = [ksize, ksize, bottom.get_shape()[3], 1]
filt = tf.ones(shape)
input_norm = tf.sqrt(tf.nn.conv2d(bottom*bottom, filt, [1,1,1,1], padding=pad)+eps)
return input_norm
def _add_orthogonal_constraint(self, filt, n_filt):
filt = tf.reshape(filt, [-1, n_filt])
inner_pro = tf.matmul(tf.transpose(filt), filt)
loss = 2e-4*tf.nn.l2_loss(inner_pro-tf.eye(n_filt))
tf.add_to_collection('orth_constraint', loss)
def _conv_layer(self, bottom, ksize, n_filt, is_training, name, stride=1, bn=False, relu=True, pad='SAME', norm='none', reg=False, orth=False, w_norm='none'):
with tf.variable_scope(name) as scope:
n_input = bottom.get_shape().as_list()[3]
shape = [ksize, ksize, n_input, n_filt]
print("shape of filter %s: %s" % (name, str(shape)))
filt = self.get_conv_filter(shape, reg, stddev=tf.sqrt(2.0/tf.to_float(ksize*ksize*n_input)))
conv = tf.nn.conv2d(bottom, filt, [1, stride, stride, 1], padding=pad)
xnorm = self._get_input_norm(bottom, ksize, pad)
wnorm = self._get_filter_norm(filt)
if w_norm == 'linear':
conv = conv/wnorm
conv = -0.63662*tf.acos(conv)+1
elif w_norm == 'cosine':
conv = conv/wnorm
elif w_norm == 'sigmoid':
k_value_w = 0.3
constant_coeff_w = (1 + numpy.exp(-numpy.pi/(2*k_value_w)))/(1 - numpy.exp(-numpy.pi/(2*k_value_w)))
conv = conv/wnorm
conv = constant_coeff_w*(1-tf.exp(tf.acos(conv)/k_value_w-numpy.pi/(2*k_value_w)))/(1+tf.exp(tf.acos(conv)/k_value_w-numpy.pi/(2*k_value_w)))
elif w_norm == 'none':
pass
if norm == 'linear':
conv = conv/xnorm
conv = conv/wnorm
conv = -0.63662*tf.acos(conv)+1
elif norm == 'cosine':
conv = conv/xnorm
conv = conv/wnorm
elif norm == 'sigmoid':
k_value = 0.3
constant_coeff = (1 + numpy.exp(-numpy.pi/(2*k_value)))/(1 - numpy.exp(-numpy.pi/(2*k_value)))
conv = conv/xnorm
conv = conv/wnorm
conv = constant_coeff*(1-tf.exp(tf.acos(conv)/k_value-numpy.pi/(2*k_value)))/(1+tf.exp(tf.acos(conv)/k_value-numpy.pi/(2*k_value)))
elif norm == 'lr_sigmoid':
k_value_lr = tf.get_variable('k_value_lr', n_filt,
initializer=tf.constant_initializer(0.7),
dtype=tf.float32)
k_value_lr = tf.abs(k_value_lr) + 0.05
constant_coeff = (1 + tf.exp(-numpy.pi/(2*k_value_lr)))/(1 - tf.exp(-numpy.pi/(2*k_value_lr)))
conv = conv/xnorm
conv = conv/wnorm
conv = constant_coeff*(1-tf.exp(tf.acos(conv)/k_value_lr-numpy.pi/(2*k_value_lr)))/(1+tf.exp(tf.acos(conv)/k_value_lr-numpy.pi/(2*k_value_lr)))
elif norm == 'none':
pass
if orth:
self._add_orthogonal_constraint(filt, n_filt)
if bn:
conv = self.batch_norm(conv, n_filt, is_training)
if relu:
return tf.nn.relu(conv)
else:
return conv
# Input should be an rgb image [batch, height, width, 3]
def build(self, rgb, n_class, is_training):
self.wd = 5e-4
feat = (rgb - 127.5)/128.0
ksize = 3
n_layer = 3
#32X32
n_out = 128
for i in range(n_layer):
feat = self._conv_layer(feat, ksize, n_out, is_training, name="conv1_"+str(i), bn=True, relu=True, pad='SAME', norm='cosine', reg=False, orth=True)
feat = self._max_pool(feat, 'pool1')
#16X16
n_out = 192
for i in range(n_layer):
feat = self._conv_layer(feat, ksize, n_out, is_training, name="conv2_"+str(i), bn=True, relu=True, pad='SAME', norm='cosine', reg=False, orth=True)
feat = self._max_pool(feat, 'pool2')
#8X8
n_out = 256
for i in range(n_layer):
feat = self._conv_layer(feat, ksize, n_out, is_training, name="conv3_"+str(i), bn=True, relu=True, pad='SAME', norm='cosine', reg=False, orth=True)
feat = self._max_pool(feat, 'pool3')
self.fc6 = self._conv_layer(feat, 4, 256, is_training, "fc6", bn=True, relu=False, pad='VALID', norm='cosine', reg=False, orth=True)
self.score = self._conv_layer(self.fc6, 1, n_class, is_training, "score", bn=False, relu=False, pad='VALID', norm='none', reg=True, orth=False, w_norm='none')
self.pred = tf.squeeze(tf.argmax(self.score, axis=3))