forked from MasteringOpenCV/code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFluidSolver.cpp
executable file
·412 lines (307 loc) · 10.9 KB
/
FluidSolver.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
/*****************************************************************************
* Ch9 of the book "Mastering OpenCV with Practical Computer Vision Projects"
* Copyright Packt Publishing 2012.
* http://www.packtpub.com/cool-projects-with-opencv/book
* http://code.google.com/p/fluidwall/
*****************************************************************************/
/**
* @file FluidSolver.cpp
* @author Austin Hines <[email protected]>
* @copyright 2011 Austin Hines, Naureen Mahmood, and Texas A&M Dept. of Visualization
* @version 1.0.0
*
* This file is part of Fluid Wall. You can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Fluid Wall is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Fluid Wall. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "FluidSolver.h"
#include <stdlib.h>
#include <stdio.h>
#define ROW_WIDTH N_+2
#define IX(i,j) ((i)+(ROW_WIDTH)*(j))
#define FOR_EACH_CELL for (i=1 ; i<=N_ ; i++) { for (j=1 ; j<=N_ ; j++) {
#define END_FOR }}
#define SWAP(x0,x) { float* tmp=x0; x0=x; x=tmp; }
FluidSolver::FluidSolver(void)
{
FluidSolver(128, 0.1f, 0.00f, 0.0f);
}
FluidSolver::FluidSolver(int N, float dt, float diff, float visc)
{
N_ = N;
dt_ = dt;
diff_ = diff;
visc_ = visc;
int size = getSize();
u_ = (float *) malloc(size * sizeof(float));
v_ = (float *) malloc(size * sizeof(float));
u_prev_ = (float *) malloc(size * sizeof(float));
v_prev_ = (float *) malloc(size * sizeof(float));
dens_ = (float *) malloc(size * sizeof(float));
dens_prev_ = (float *) malloc(size * sizeof(float));
bounds_ = (bool *) malloc(size * sizeof(bool) );
}
FluidSolver::~FluidSolver(void)
{
if ( u_ ) free ( u_ );
if ( v_ ) free ( v_ );
if ( u_prev_ ) free ( u_prev_ );
if ( v_prev_ ) free ( v_prev_ );
if ( dens_ ) free ( dens_ );
if ( bounds_ ) free ( bounds_ );
if ( dens_prev_ ) free ( dens_prev_ );
}
void FluidSolver::reset()
{
for (int i=0 ; i < getSize() ; i++) {
u_[i] = v_[i] = u_prev_[i] = v_prev_[i] = dens_[i] = dens_prev_[i] = 0.0f;
bounds_[i] = false;
}
}
void FluidSolver::update()
{
computeDensityStep(dens_, dens_prev_, u_, v_);
computeVelocityStep(u_, v_, u_prev_, v_prev_);
//reset u_prev_, v_prev_, and dens_prev
for (int i=0 ; i < getSize() ; i++)
u_prev_[i] = v_prev_[i] = dens_prev_[i] = 0.0f;
}
//TODO: Can increase efficiency by only testing valid coordinates
// when emitters are created.
void FluidSolver::addVertVelocityAt(int x, int y, float value)
{
if(isValidCoordinate(x, y))
v_prev_[IX(x,y)] += value;
}
void FluidSolver::addHorzVelocityAt(int x, int y, float value)
{
if(isValidCoordinate(x, y))
u_prev_[IX(x,y)] += value;
}
void FluidSolver::addDensityAt(int x, int y, float value)
{
if(isValidCoordinate(x, y))
dens_prev_[IX(x,y)] += value;
}
void FluidSolver::setBoundAt(int x, int y, bool isBound)
{
if(isValidCoordinate(x, y))
bounds_[IX(x,y)] = isBound;
}
//accessors
bool FluidSolver::isBoundAt(int x, int y)
{
return bounds_[IX(x,y)];
}
float FluidSolver::getDensityAt(int x, int y)
{
return dens_[IX(x,y)];
}
float FluidSolver::getVertVelocityAt(int x, int y)
{
return v_[IX(x,y)];
}
float FluidSolver::getHorzVelocityAt(int x, int y)
{
return u_[IX(x,y)];
}
///protected functions
int FluidSolver::getSize()
{
return (ROW_WIDTH) * (ROW_WIDTH);
}
bool FluidSolver::isValidCoordinate(int x, int y)
{
bool xIsValid = (x >= 1) && (x <= N_);
bool yIsValid = (y >= 1) && (y <= N_);
if(xIsValid && yIsValid)
return true;
else
return false;
}
void FluidSolver::addSource(float* x, float* s)
{
int i;
for (i=0 ; i<getSize() ; i++)
x[i] += dt_*s[i];
}
void FluidSolver::setBounds(int boundsFlag, float* x)
{
int i, j;
//free slip boundary edges
for ( i=1 ; i<=N_; i++ ) {
//reverse velocity component on vertical walls (u)
x[IX(0 ,i)] = boundsFlag==1 ? -x[IX(1,i)] : x[IX(1,i)];
x[IX(N_+1,i)] = boundsFlag==1 ? -x[IX(N_,i)] : x[IX(N_,i)];
//reverse velocity component on horizontal (top and bottom) walls (v)
x[IX(i,0 )] = boundsFlag==2 ? -x[IX(i,1)] : x[IX(i,1)];
x[IX(i,N_+1)] = boundsFlag==2 ? -x[IX(i,N_)] : x[IX(i,N_)];
}
FOR_EACH_CELL
//detect bounds changes for each cell and reverse velocity components
//set current value to a negative average of surrounding values
if(bounds_[IX(i,j)]) {
//set current value to a negative average of surrounding values
x[IX(i,j)] = 0;
//vertical (v)
//if bounds are about to turn off, velocity component of off cell becomes positive.
if(!bounds_[IX(i,j+1)])
x[IX(i,j)] = boundsFlag==2 ? -x[IX(i,j+1)] : x[IX(i,j+1)];
//horizontal (u)
//if bounds change from on to off, velocity component of off cell becomes positive.
if(!bounds_[IX(i+1,j)])
x[IX(i,j)] = boundsFlag==1 ? -x[IX(i+1,j)] : x[IX(i+1,j)];
}
else {
//vertical (v)
//if bounds change from off to on, velocity component of off cell becomes negative.
if(bounds_[IX(i,j+1)])
x[IX(i,j+1)] = boundsFlag==2 ? -x[IX(i,j)] : x[IX(i,j)];
//horizontal (u)
//if bounds change from off to on, velocity component of off cell becomes negative.
if( bounds_[IX(i+1,j)])
x[IX(i+1,j)] = boundsFlag==1 ? -x[IX(i,j)] : x[IX(i,j)];
}
END_FOR
//handle corner conditions of objects
FOR_EACH_CELL
// X = cell in question | 0 = open cell | * = closed cell (with a boundary)
// * 0
// X *
if(bounds_[IX(i,j)] && bounds_[IX(i+1, j)] && bounds_[IX(i, j+1)] && !bounds_[IX(i+1, j+1)])
x[IX(i, j)] = 0.5 *(x[IX(i+1, j)] + x[IX(i, j+1)]);
// X *
// * 0
else if(bounds_[IX(i,j)] && bounds_[IX(i+1, j)] && bounds_[IX(i, j-1)] && !bounds_[IX(i+1, j-1)])
x[IX(i, j)] = 0.5 *(x[IX(i+1, j)] + x[IX(i, j-1)]);
// * X
// 0 *
else if(bounds_[IX(i,j)] && bounds_[IX(i-1, j)] && bounds_[IX(i, j-1)] && !bounds_[IX(i-1, j-1)])
x[IX(i, j)] = 0.5 *(x[IX(i-1, j)] + x[IX(i, j-1)]);
// 0 *
// * X
else if(bounds_[IX(i,j)] && bounds_[IX(i-1, j)] && bounds_[IX(i, j+1)] && !bounds_[IX(i-1, j+1)])
x[IX(i, j)] = 0.5 *(x[IX(i-1, j)] + x[IX(i, j+1)]);
END_FOR
//corner conditions
x[IX(0, 0 )] = 0.5f * (x[IX(1, 0 )] + x[IX(0, 1 )]);
x[IX(0, N_ + 1)] = 0.5f * (x[IX(1, N_+1)] + x[IX(0, N_)]);
x[IX(N_ + 1, 0 )] = 0.5f * (x[IX(N_, 0 )] + x[IX(N_ + 1, 1 )]);
x[IX(N_ + 1, N_ + 1)] = 0.5f * (x[IX(N_, N_+1)] + x[IX(N_ + 1, N_)]);
}
void FluidSolver::linearSolve( int boundsFlag, float* x, float* x0, float a, float c)
{
int i, j, k;
//use 20 iterations of Gauss-Sidel to find a convergence of values
for ( k=0 ; k<20 ; k++ ) {
FOR_EACH_CELL
//exchange values with neighbors
x[IX(i,j)] = (x0[IX(i,j)] + a*(x[IX(i-1,j)] + x[IX(i+1,j)] + x[IX(i,j-1)] + x[IX(i,j+1)])) / c;
END_FOR
// factor in boundary conditions with each solution iteration
setBounds(boundsFlag, x);
}
}
void FluidSolver::diffuse (int boundsFlag, float* x, float* x0)
{
float diffusionPerCell = dt_ * diff_ * N_ * N_;
linearSolve ( boundsFlag, x, x0, diffusionPerCell, 1+4*diffusionPerCell);
}
void FluidSolver::advect (int boundsFlag, float* d, float* d0,
float* u, float* v)
{
int i, j;
int i0; //new x cell coordinate based on velocity grid
int j0; //new y cell coordinate based on velocity grid
int i1; //x + 1 cell next to new cell coordinate
int j1; //y + 1 cell next to new cell coordinate
float x, y, s0, t0, s1, t1, dt0;
//initial time differential = dt * number of cells in a row
dt0 = dt_ * N_;
//back trace density and velocity values from the center of each cell
FOR_EACH_CELL
// calculate new coordinates based on existing velocity grids
x = i - dt0 * u[IX(i,j)];
y = j - dt0 * v[IX(i,j)];
//limit x coordinate to fall within the grid
if (x < 0.5f) x = 0.5f;
if (x > N_ + 0.5f) x = N_ + 0.5f;
i0 = (int)x;
i1 = i0 + 1;
//limit y coordinate to fall within the grid
if (y < 0.5f) y = 0.5f;
if (y > N_ + 0.5f) y = N_ + 0.5f;
j0 = (int)y;
j1 = j0 + 1;
s1 = x - i0; //difference between calculated x position and limited x position
s0 = 1 - s1; //calculate relative x distance from center of this cell
t1 = y - j0;
t0 = 1 - t1;
//blend several values from the velocity grid together, based on where in the cell
//the new coordinate valls
d[IX(i,j)] = s0 * (t0 * d0[IX(i0,j0)] + t1 * d0[IX(i0,j1)]) +
s1 * (t0 * d0[IX(i1,j0)] + t1 * d0[IX(i1,j1)]);
END_FOR
setBounds(boundsFlag, d);
}
void FluidSolver::project( float* u, float* v, float* p, float* div)
{
int i, j;
float h = 1.0 / N_; //calculate unit length of each cell relative to the whole grid.
FOR_EACH_CELL
//calculate initial solution to gradient field based on the difference in velocities of
//surrounding cells.
div[IX(i, j)] = -0.5f * h * (u[IX(i + 1, j)] - u[IX(i - 1, j)] + v[IX(i, j + 1)] - v[IX(i, j - 1)]);
//set projected solution values to be zero
p[IX(i, j)] = 0;
END_FOR
//set bounds for diffusion
setBounds(0, div);
setBounds(0, p);
// calculate gradient (height) field
linearSolve (0, p, div, 1, 4);
FOR_EACH_CELL
//subtract gradient field from current velocities
u[IX(i, j)] -= 0.5f * N_ * (p[IX(i + 1, j)] - p[IX(i - 1, j)]);
v[IX(i, j)] -= 0.5f * N_ * (p[IX(i, j + 1)] - p[IX(i, j - 1)]);
END_FOR
//set boundaries for velocity
setBounds(1, u);
setBounds(2, v);
}
void FluidSolver::computeDensityStep( float* x, float* x0, float* u, float* v )
{
addSource (x, x0);
SWAP(x0, x);
diffuse(0, x, x0);
SWAP(x0, x);
advect(0, x, x0, u, v);
}
void FluidSolver::computeVelocityStep (float* u, float* v, float* u0, float* v0)
{
addSource(u, u0);
addSource(v, v0);
//diffuse horizontal
SWAP(u0, u);
diffuse(1, u, u0);
//diffuse vertical
SWAP(v0, v);
diffuse(2, v, v0);
project (u, v, u0, v0);
SWAP(u0, u);
SWAP (v0, v);
//advect velocities
advect(1, u, u0, u0, v0);
advect(2, v, v0, u0, v0);
project(u, v, u0, v0);
}