forked from jax-ml/jax
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lobpcg_test.py
416 lines (340 loc) · 13.9 KB
/
lobpcg_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
# Copyright 2022 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for lobpcg routine.
If LOBPCG_DEBUG_PLOT_DIR is set, exports debug visuals to that directory.
Requires matplotlib.
"""
import functools
import re
import os
from absl.testing import absltest
from absl.testing import parameterized
import numpy as np
from matplotlib import pyplot as plt
import scipy.linalg as sla
import scipy.sparse as sps
import jax
from jax.config import config
from jax._src import test_util as jtu
from jax.experimental.sparse import linalg, bcoo
import jax.numpy as jnp
def _clean_matrix_name(name):
return re.sub('[^0-9a-zA-Z]+', '_', name)
def _make_concrete_cases(f64):
dtype = np.float64 if f64 else np.float32
example_names = list(_concrete_generators(dtype))
cases = []
for name in example_names:
n, k, m, tol = 100, 10, 20, None
if name == 'ring laplacian':
m *= 3
if name.startswith('linear'):
m *= 2
if f64:
m *= 2
if name.startswith('cluster') and not f64:
tol = 2e-6
clean_matrix_name = _clean_matrix_name(name)
case = {
'matrix_name': name,
'n': n,
'k': k,
'm': m,
'tol': tol,
'testcase_name': f'{clean_matrix_name}_n{n}'
}
cases.append(case)
assert len({c['testcase_name'] for c in cases}) == len(cases)
return cases
def _make_callable_cases(f64):
dtype = np.float64 if f64 else np.float32
example_names = list(_callable_generators(dtype))
return [{'testcase_name': _clean_matrix_name(n), 'matrix_name': n}
for n in example_names]
def _make_ring(n):
# from lobpcg scipy tests
col = np.zeros(n)
col[1] = 1
A = sla.toeplitz(col)
D = np.diag(A.sum(axis=1))
L = D - A
# Compute the full eigendecomposition using tricks, e.g.
# http://www.cs.yale.edu/homes/spielman/561/2009/lect02-09.pdf
tmp = np.pi * np.arange(n) / n
analytic_w = 2 * (1 - np.cos(tmp))
analytic_w.sort()
analytic_w = analytic_w[::-1]
return L, analytic_w
def _make_diag(diag):
diag.sort()
diag = diag[::-1]
return np.diag(diag), diag
def _make_cluster(to_cluster, n):
return _make_diag(
np.array([1000] * to_cluster + [1] * (n - to_cluster)))
def _concrete_generators(dtype):
d = {
'id': lambda n, _k: _make_diag(np.ones(n)),
'linear cond=1k': lambda n, _k: _make_diag(np.linspace(1, 1000, n)),
'linear cond=100k':
lambda n, _k: _make_diag(np.linspace(1, 100 * 1000, n)),
'geom cond=1k': lambda n, _k: _make_diag(np.logspace(0, 3, n)),
'geom cond=100k': lambda n, _k: _make_diag(np.logspace(0, 5, n)),
'ring laplacian': lambda n, _k: _make_ring(n),
'cluster(k/2)': lambda n, k: _make_cluster(k // 2, n),
'cluster(k-1)': lambda n, k: _make_cluster(k - 1, n),
'cluster(k)': lambda n, k: _make_cluster(k, n)}
def cast_fn(fn):
def casted_fn(n, k):
result = fn(n, k)
cast = functools.partial(np.array, dtype=dtype)
return tuple(map(cast, result))
return casted_fn
return {k: cast_fn(v) for k, v in d.items()}
def _make_id_fn(n):
return lambda x: x, np.ones(n), 5
def _make_diag_fn(diagonal, m):
return lambda x: diagonal.astype(x.dtype) * x, diagonal, m
def _make_ring_fn(n, m):
_, eigs = _make_ring(n)
def ring_action(x):
degree = 2 * x
lnbr = jnp.roll(x, 1)
rnbr = jnp.roll(x, -1)
return degree - lnbr - rnbr
return ring_action, eigs, m
def _make_randn_fn(n, k, m):
rng = np.random.default_rng(1234)
tall_skinny = rng.standard_normal((n, k))
def randn_action(x):
ts = jnp.array(tall_skinny, dtype=x.dtype)
p = jax.lax.Precision.HIGHEST
return ts.dot(ts.T.dot(x, precision=p), precision=p)
_, s, _ = np.linalg.svd(tall_skinny, full_matrices=False)
return randn_action, s ** 2, m
def _make_sparse_fn(n, fill):
rng = np.random.default_rng(1234)
slots = n ** 2
filled = max(int(slots * fill), 1)
pos = rng.choice(slots, size=filled, replace=False)
posx, posy = divmod(pos, n)
data = rng.standard_normal(len(pos))
coo = sps.coo_matrix((data, (posx, posy)), shape=(n, n))
def sparse_action(x):
coo_typed = coo.astype(np.dtype(x.dtype))
sps_mat = bcoo.BCOO.from_scipy_sparse(coo_typed)
dn = (((1,), (0,)), ((), ())) # Good old fashioned matmul.
x = bcoo.bcoo_dot_general(sps_mat, x, dimension_numbers=dn)
sps_mat_T = sps_mat.transpose()
return bcoo.bcoo_dot_general(sps_mat_T, x, dimension_numbers=dn)
dense = coo.todense()
_, s, _ = np.linalg.svd(dense, full_matrices=False)
return sparse_action, s ** 2, 20
def _callable_generators(dtype):
n = 100
topk = 10
d = {
'id': _make_id_fn(n),
'linear cond=1k': _make_diag_fn(np.linspace(1, 1000, n), 40),
'linear cond=100k': _make_diag_fn(np.linspace(1, 100 * 1000, n), 40),
'geom cond=1k': _make_diag_fn(np.logspace(0, 3, n), 20),
'geom cond=100k': _make_diag_fn(np.logspace(0, 5, n), 20),
'ring laplacian': _make_ring_fn(n, 40),
'randn': _make_randn_fn(n, topk, 40),
'sparse 1%': _make_sparse_fn(n, 0.01),
'sparse 10%': _make_sparse_fn(n, 0.10),
}
ret = {}
for k, (vec_mul_fn, eigs, m) in d.items():
if jtu.num_float_bits(dtype) > 32:
m *= 3
eigs.sort()
# Note we must lift the vector multiply into matmul
fn = jax.vmap(vec_mul_fn, in_axes=1, out_axes=1)
ret[k] = (fn, eigs[::-1][:topk].astype(dtype), n, m)
return ret
@jtu.with_config(
jax_enable_checks=True,
jax_debug_nans=True,
jax_numpy_rank_promotion='raise',
jax_traceback_filtering='off')
class LobpcgTest(jtu.JaxTestCase):
def checkLobpcgConsistency(self, matrix_name, n, k, m, tol, dtype):
A, eigs = _concrete_generators(dtype)[matrix_name](n, k)
X = self.rng().standard_normal(size=(n, k)).astype(dtype)
A, X = (jnp.array(i, dtype=dtype) for i in (A, X))
theta, U, i = linalg.lobpcg_standard(A, X, m, tol)
self.assertDtypesMatch(theta, A)
self.assertDtypesMatch(U, A)
self.assertLess(
i, m, msg=f'expected early convergence iters {int(i)} < max {m}')
issorted = theta[:-1] >= theta[1:]
all_true = np.ones_like(issorted).astype(bool)
self.assertArraysEqual(issorted, all_true)
k = X.shape[1]
relerr = np.abs(theta - eigs[:k]) / eigs[:k]
for i in range(k):
# The self-consistency property should be ensured.
u = np.asarray(U[:, i], dtype=A.dtype)
t = float(theta[i])
Au = A.dot(u)
resid = Au - t * u
resid_norm = np.linalg.norm(resid)
vector_norm = np.linalg.norm(Au)
adjusted_error = resid_norm / n / (t + vector_norm) / 10
eps = float(jnp.finfo(dtype).eps) if tol is None else tol
self.assertLessEqual(
adjusted_error,
eps,
msg=f'convergence criterion for eigenvalue {i} not satisfied, '
f'floating point error {adjusted_error} not <= {eps}')
# There's no real guarantee we can be within x% of the true eigenvalue.
# However, for these simple unit test examples this should be met.
tol = float(np.sqrt(eps)) * 10
self.assertLessEqual(
relerr[i],
tol,
msg=f'expected relative error within {tol}, was {float(relerr[i])}'
f' for eigenvalue {i} (actual {float(theta[i])}, '
f'expected {float(eigs[i])})')
def checkLobpcgMonotonicity(self, matrix_name, n, k, m, tol, dtype):
del tol
A, eigs = _concrete_generators(dtype)[matrix_name](n, k)
X = self.rng().standard_normal(size=(n, k)).astype(dtype)
_theta, _U, _i, info = linalg._lobpcg_standard_matrix(
A, X, m, tol=0, debug=True)
self.assertArraysEqual(info['X zeros'], jnp.zeros_like(info['X zeros']))
# To check for any divergence, make sure that the last 20% of
# steps have lower worst-case relerr than first 20% of steps,
# at least up to an order of magnitude.
#
# This is non-trivial, as many implementations have catastrophic
# cancellations at convergence for residual terms, and rely on
# brittle locking tolerance to avoid divergence.
eigs = eigs[:k]
relerrs = np.abs(np.array(info['lambda history']) - eigs) / eigs
few_steps = max(m // 5, 1)
self.assertLess(
relerrs[-few_steps:].max(axis=1).mean(),
10 * relerrs[:few_steps].max(axis=1).mean())
self._possibly_plot(A, eigs, X, m, matrix_name)
def _possibly_plot(self, A, eigs, X, m, matrix_name):
if not os.getenv('LOBPCG_EMIT_DEBUG_PLOTS'):
return
if isinstance(A, (np.ndarray, jnp.ndarray)):
lobpcg = linalg._lobpcg_standard_matrix
else:
lobpcg = linalg._lobpcg_standard_callable
_theta, _U, _i, info = lobpcg(A, X, m, tol=0, debug=True)
plot_dir = os.getenv('TEST_UNDECLARED_OUTPUTS_DIR')
assert plot_dir, 'expected TEST_UNDECLARED_OUTPUTS_DIR for lobpcg plots'
self._debug_plots(X, eigs, info, matrix_name, plot_dir)
def _debug_plots(self, X, eigs, info, matrix_name, lobpcg_debug_plot_dir):
os.makedirs(lobpcg_debug_plot_dir, exist_ok=True)
clean_matrix_name = _clean_matrix_name(matrix_name)
n, k = X.shape
dt = 'f32' if X.dtype == np.float32 else 'f64'
figpath = os.path.join(
lobpcg_debug_plot_dir,
f'{clean_matrix_name}_n{n}_k{k}_{dt}.png')
plt.switch_backend('Agg')
fig, (ax0, ax1, ax2, ax3) = plt.subplots(1, 4, figsize=(24, 4))
fig.suptitle(fr'{matrix_name} ${n=},{k=}$, {dt}')
line_styles = [':', '--', '-.', '-']
for key, ls in zip(['X orth', 'P orth', 'P.X'], line_styles):
ax0.semilogy(info[key], ls=ls, label=key)
ax0.set_title('basis average orthogonality')
ax0.legend()
relerrs = np.abs(np.array(info['lambda history']) - eigs) / eigs
keys = ['max', 'p50', 'min']
fns = [np.max, np.median, np.min]
for key, fn, ls in zip(keys, fns, line_styles):
ax1.semilogy(fn(relerrs, axis=1), ls=ls, label=key)
ax1.set_title('eigval relerr')
ax1.legend()
for key, ls in zip(['basis rank', 'converged', 'P zeros'], line_styles):
ax2.plot(info[key], ls=ls, label=key)
ax2.set_title('basis dimension counts')
ax2.legend()
prefix = 'adjusted residual'
for key, ls in zip(keys, line_styles):
ax3.semilogy(info[prefix + ' ' + key], ls=ls, label=key)
ax3.axhline(np.finfo(X.dtype).eps, label='eps', c='k')
ax3.legend()
ax3.set_title(prefix + rf' $\lambda_{{\max}}=\ ${eigs[0]:.1e}')
fig.savefig(figpath, bbox_inches='tight')
plt.close(fig)
def checkApproxEigs(self, example_name, dtype):
fn, eigs, n, m = _callable_generators(dtype)[example_name]
k = len(eigs)
X = self.rng().standard_normal(size=(n, k)).astype(dtype)
theta, U, iters = linalg.lobpcg_standard(fn, X, m, tol=0.0)
# Given tolerance is zero all iters should be used.
self.assertEqual(iters, m)
# Evaluate in f64.
as64 = functools.partial(np.array, dtype=np.float64)
theta, eigs, U = (as64(x) for x in (theta, eigs, U))
relerr = np.abs(theta - eigs) / eigs
UTU = U.T.dot(U)
tol = np.sqrt(jnp.finfo(dtype).eps) * 100
if example_name == 'ring laplacian':
tol = 1e-2
for i in range(k):
self.assertLessEqual(
relerr[i], tol,
msg=f'eigenvalue {i} (actual {theta[i]} expected {eigs[i]})')
self.assertAllClose(UTU[i, i], 1.0, rtol=tol)
UTU[i, i] = 0
self.assertArraysAllClose(UTU[i], np.zeros_like(UTU[i]), atol=tol)
self._possibly_plot(fn, eigs, X, m, 'callable_' + example_name)
class F32LobpcgTest(LobpcgTest):
def testLobpcgValidatesArguments(self):
A, _ = _concrete_generators(np.float32)['id'](100, 10)
X = self.rng().standard_normal(size=(100, 10)).astype(np.float32)
with self.assertRaisesRegex(ValueError, 'search dim > 0'):
linalg.lobpcg_standard(A, X[:,:0])
with self.assertRaisesRegex(ValueError, 'A, X must have same dtypes'):
linalg.lobpcg_standard(
lambda x: jnp.array(A).dot(x).astype(jnp.float16), X)
with self.assertRaisesRegex(ValueError, r'A must be \(100, 100\)'):
linalg.lobpcg_standard(A[:60, :], X)
with self.assertRaisesRegex(ValueError, r'search dim \* 5 < matrix dim'):
linalg.lobpcg_standard(A[:50, :50], X[:50])
@parameterized.named_parameters(_make_concrete_cases(f64=False))
@jtu.skip_on_devices("gpu")
def testLobpcgConsistencyF32(self, matrix_name, n, k, m, tol):
self.checkLobpcgConsistency(matrix_name, n, k, m, tol, jnp.float32)
@parameterized.named_parameters(_make_concrete_cases(f64=False))
def testLobpcgMonotonicityF32(self, matrix_name, n, k, m, tol):
self.checkLobpcgMonotonicity(matrix_name, n, k, m, tol, jnp.float32)
@parameterized.named_parameters(_make_callable_cases(f64=False))
def testCallableMatricesF32(self, matrix_name):
self.checkApproxEigs(matrix_name, jnp.float32)
@jtu.with_config(jax_enable_x64=True)
class F64LobpcgTest(LobpcgTest):
@parameterized.named_parameters(_make_concrete_cases(f64=True))
@jtu.skip_on_devices("tpu", "iree", "gpu")
def testLobpcgConsistencyF64(self, matrix_name, n, k, m, tol):
self.checkLobpcgConsistency(matrix_name, n, k, m, tol, jnp.float64)
@parameterized.named_parameters(_make_concrete_cases(f64=True))
@jtu.skip_on_devices("tpu", "iree", "gpu")
def testLobpcgMonotonicityF64(self, matrix_name, n, k, m, tol):
self.checkLobpcgMonotonicity(matrix_name, n, k, m, tol, jnp.float64)
@parameterized.named_parameters(_make_callable_cases(f64=True))
@jtu.skip_on_devices("tpu", "iree", "gpu")
def testCallableMatricesF64(self, matrix_name):
self.checkApproxEigs(matrix_name, jnp.float64)
if __name__ == '__main__':
config.parse_flags_with_absl()
absltest.main(testLoader=jtu.JaxTestLoader())