forked from Aircoookie/WLED
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcolors.cpp
276 lines (254 loc) · 8.48 KB
/
colors.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
#include "wled.h"
/*
* Color conversion methods
*/
void setRandomColor(byte* rgb)
{
lastRandomIndex = strip.get_random_wheel_index(lastRandomIndex);
colorHStoRGB(lastRandomIndex*256,255,rgb);
}
void colorHStoRGB(uint16_t hue, byte sat, byte* rgb) //hue, sat to rgb
{
float h = ((float)hue)/65535.0;
float s = ((float)sat)/255.0;
byte i = floor(h*6);
float f = h * 6-i;
float p = 255 * (1-s);
float q = 255 * (1-f*s);
float t = 255 * (1-(1-f)*s);
switch (i%6) {
case 0: rgb[0]=255,rgb[1]=t,rgb[2]=p;break;
case 1: rgb[0]=q,rgb[1]=255,rgb[2]=p;break;
case 2: rgb[0]=p,rgb[1]=255,rgb[2]=t;break;
case 3: rgb[0]=p,rgb[1]=q,rgb[2]=255;break;
case 4: rgb[0]=t,rgb[1]=p,rgb[2]=255;break;
case 5: rgb[0]=255,rgb[1]=p,rgb[2]=q;
}
}
//get RGB values from color temperature in K (https://tannerhelland.com/2012/09/18/convert-temperature-rgb-algorithm-code.html)
void colorKtoRGB(uint16_t kelvin, byte* rgb) //white spectrum to rgb, calc
{
float r = 0, g = 0, b = 0;
float temp = kelvin / 100;
if (temp <= 66) {
r = 255;
g = round(99.4708025861 * log(temp) - 161.1195681661);
if (temp <= 19) {
b = 0;
} else {
b = round(138.5177312231 * log((temp - 10)) - 305.0447927307);
}
} else {
r = round(329.698727446 * pow((temp - 60), -0.1332047592));
g = round(288.1221695283 * pow((temp - 60), -0.0755148492));
b = 255;
}
//g += 12; //mod by Aircoookie, a bit less accurate but visibly less pinkish
rgb[0] = (uint8_t) constrain(r, 0, 255);
rgb[1] = (uint8_t) constrain(g, 0, 255);
rgb[2] = (uint8_t) constrain(b, 0, 255);
rgb[3] = 0;
}
void colorCTtoRGB(uint16_t mired, byte* rgb) //white spectrum to rgb, bins
{
//this is only an approximation using WS2812B with gamma correction enabled
if (mired > 475) {
rgb[0]=255;rgb[1]=199;rgb[2]=92;//500
} else if (mired > 425) {
rgb[0]=255;rgb[1]=213;rgb[2]=118;//450
} else if (mired > 375) {
rgb[0]=255;rgb[1]=216;rgb[2]=118;//400
} else if (mired > 325) {
rgb[0]=255;rgb[1]=234;rgb[2]=140;//350
} else if (mired > 275) {
rgb[0]=255;rgb[1]=243;rgb[2]=160;//300
} else if (mired > 225) {
rgb[0]=250;rgb[1]=255;rgb[2]=188;//250
} else if (mired > 175) {
rgb[0]=247;rgb[1]=255;rgb[2]=215;//200
} else {
rgb[0]=237;rgb[1]=255;rgb[2]=239;//150
}
}
#ifndef WLED_DISABLE_HUESYNC
void colorXYtoRGB(float x, float y, byte* rgb) //coordinates to rgb (https://www.developers.meethue.com/documentation/color-conversions-rgb-xy)
{
float z = 1.0f - x - y;
float X = (1.0f / y) * x;
float Z = (1.0f / y) * z;
float r = (int)255*(X * 1.656492f - 0.354851f - Z * 0.255038f);
float g = (int)255*(-X * 0.707196f + 1.655397f + Z * 0.036152f);
float b = (int)255*(X * 0.051713f - 0.121364f + Z * 1.011530f);
if (r > b && r > g && r > 1.0f) {
// red is too big
g = g / r;
b = b / r;
r = 1.0f;
} else if (g > b && g > r && g > 1.0f) {
// green is too big
r = r / g;
b = b / g;
g = 1.0f;
} else if (b > r && b > g && b > 1.0f) {
// blue is too big
r = r / b;
g = g / b;
b = 1.0f;
}
// Apply gamma correction
r = r <= 0.0031308f ? 12.92f * r : (1.0f + 0.055f) * pow(r, (1.0f / 2.4f)) - 0.055f;
g = g <= 0.0031308f ? 12.92f * g : (1.0f + 0.055f) * pow(g, (1.0f / 2.4f)) - 0.055f;
b = b <= 0.0031308f ? 12.92f * b : (1.0f + 0.055f) * pow(b, (1.0f / 2.4f)) - 0.055f;
if (r > b && r > g) {
// red is biggest
if (r > 1.0f) {
g = g / r;
b = b / r;
r = 1.0f;
}
} else if (g > b && g > r) {
// green is biggest
if (g > 1.0f) {
r = r / g;
b = b / g;
g = 1.0f;
}
} else if (b > r && b > g) {
// blue is biggest
if (b > 1.0f) {
r = r / b;
g = g / b;
b = 1.0f;
}
}
rgb[0] = 255.0*r;
rgb[1] = 255.0*g;
rgb[2] = 255.0*b;
}
void colorRGBtoXY(byte* rgb, float* xy) //rgb to coordinates (https://www.developers.meethue.com/documentation/color-conversions-rgb-xy)
{
float X = rgb[0] * 0.664511f + rgb[1] * 0.154324f + rgb[2] * 0.162028f;
float Y = rgb[0] * 0.283881f + rgb[1] * 0.668433f + rgb[2] * 0.047685f;
float Z = rgb[0] * 0.000088f + rgb[1] * 0.072310f + rgb[2] * 0.986039f;
xy[0] = X / (X + Y + Z);
xy[1] = Y / (X + Y + Z);
}
#endif // WLED_DISABLE_HUESYNC
//RRGGBB / WWRRGGBB order for hex
void colorFromDecOrHexString(byte* rgb, char* in)
{
if (in[0] == 0) return;
char first = in[0];
uint32_t c = 0;
if (first == '#' || first == 'h' || first == 'H') //is HEX encoded
{
c = strtoul(in +1, NULL, 16);
} else
{
c = strtoul(in, NULL, 10);
}
rgb[0] = R(c);
rgb[1] = G(c);
rgb[2] = B(c);
rgb[3] = W(c);
}
//contrary to the colorFromDecOrHexString() function, this uses the more standard RRGGBB / RRGGBBWW order
bool colorFromHexString(byte* rgb, const char* in) {
if (in == nullptr) return false;
size_t inputSize = strnlen(in, 9);
if (inputSize != 6 && inputSize != 8) return false;
uint32_t c = strtoul(in, NULL, 16);
if (inputSize == 6) {
rgb[0] = (c >> 16);
rgb[1] = (c >> 8);
rgb[2] = c ;
} else {
rgb[0] = (c >> 24);
rgb[1] = (c >> 16);
rgb[2] = (c >> 8);
rgb[3] = c ;
}
return true;
}
float minf (float v, float w)
{
if (w > v) return v;
return w;
}
float maxf (float v, float w)
{
if (w > v) return w;
return v;
}
/*
uint32_t colorRGBtoRGBW(uint32_t c)
{
byte rgb[4];
rgb[0] = R(c);
rgb[1] = G(c);
rgb[2] = B(c);
rgb[3] = W(c);
colorRGBtoRGBW(rgb);
return RGBW32(rgb[0], rgb[1], rgb[2], rgb[3]);
}
void colorRGBtoRGBW(byte* rgb) //rgb to rgbw (http://codewelt.com/rgbw). (RGBW_MODE_LEGACY)
{
float low = minf(rgb[0],minf(rgb[1],rgb[2]));
float high = maxf(rgb[0],maxf(rgb[1],rgb[2]));
if (high < 0.1f) return;
float sat = 100.0f * ((high - low) / high); // maximum saturation is 100 (corrected from 255)
rgb[3] = (byte)((255.0f - sat) / 255.0f * (rgb[0] + rgb[1] + rgb[2]) / 3);
}
*/
byte correctionRGB[4] = {0,0,0,0};
uint16_t lastKelvin = 0;
// adjust RGB values based on color temperature in K (range [2800-10200]) (https://en.wikipedia.org/wiki/Color_balance)
uint32_t colorBalanceFromKelvin(uint16_t kelvin, uint32_t rgb)
{
//remember so that slow colorKtoRGB() doesn't have to run for every setPixelColor()
if (lastKelvin != kelvin) colorKtoRGB(kelvin, correctionRGB); // convert Kelvin to RGB
lastKelvin = kelvin;
byte rgbw[4];
rgbw[0] = ((uint16_t) correctionRGB[0] * R(rgb)) /255; // correct R
rgbw[1] = ((uint16_t) correctionRGB[1] * G(rgb)) /255; // correct G
rgbw[2] = ((uint16_t) correctionRGB[2] * B(rgb)) /255; // correct B
rgbw[3] = W(rgb);
return RGBW32(rgbw[0],rgbw[1],rgbw[2],rgbw[3]);
}
//approximates a Kelvin color temperature from an RGB color.
//this does no check for the "whiteness" of the color,
//so should be used combined with a saturation check (as done by auto-white)
//values from http://www.vendian.org/mncharity/dir3/blackbody/UnstableURLs/bbr_color.html (10deg)
//equation spreadsheet at https://bit.ly/30RkHaN
//accuracy +-50K from 1900K up to 8000K
//minimum returned: 1900K, maximum returned: 10091K (range of 8192)
uint16_t approximateKelvinFromRGB(uint32_t rgb) {
//if not either red or blue is 255, color is dimmed. Scale up
uint8_t r = R(rgb), b = B(rgb);
if (r == b) return 6550; //red == blue at about 6600K (also can't go further if both R and B are 0)
if (r > b) {
//scale blue up as if red was at 255
uint16_t scale = 0xFFFF / r; //get scale factor (range 257-65535)
b = ((uint16_t)b * scale) >> 8;
//For all temps K<6600 R is bigger than B (for full bri colors R=255)
//-> Use 9 linear approximations for blackbody radiation blue values from 2000-6600K (blue is always 0 below 2000K)
if (b < 33) return 1900 + b *6;
if (b < 72) return 2100 + (b-33) *10;
if (b < 101) return 2492 + (b-72) *14;
if (b < 132) return 2900 + (b-101) *16;
if (b < 159) return 3398 + (b-132) *19;
if (b < 186) return 3906 + (b-159) *22;
if (b < 210) return 4500 + (b-186) *25;
if (b < 230) return 5100 + (b-210) *30;
return 5700 + (b-230) *34;
} else {
//scale red up as if blue was at 255
uint16_t scale = 0xFFFF / b; //get scale factor (range 257-65535)
r = ((uint16_t)r * scale) >> 8;
//For all temps K>6600 B is bigger than R (for full bri colors B=255)
//-> Use 2 linear approximations for blackbody radiation red values from 6600-10091K (blue is always 0 below 2000K)
if (r > 225) return 6600 + (254-r) *50;
uint16_t k = 8080 + (225-r) *86;
return (k > 10091) ? 10091 : k;
}
}