-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathgetComputedPrecoders.m
41 lines (37 loc) · 1.48 KB
/
getComputedPrecoders.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
function [precoders, snrsDb] = getComputedPrecoders(simFolderName, caseNr)
%
% GETCOMPUTEDPRECODERS Load the precoders previously optimized and stored
% in a folder.
%
% Inputs: str simFolderName = name of the sim folder with precoders
% scalar caseNr = number of the case of interest in that folder
% Outputs: cell array precoders = precoder matrices
% cell array snrsDb = SNR values
%
% Max Girnyk
% Stockholm, 2014-10-01
%
% =========================================================================
%
% This Matlab script produces results used in the following paper:
%
% M. A. Girnyk, "Deep-learning based linear precoding for MIMO channels
% with finite-alphabet signaling," Physical Communication 48(2021) 101402
%
% Paper URL: https://arxiv.org/abs/2111.03504
%
% Version: 1.0 (modified 2021-11-14)
%
% License: This code is licensed under the Apache-2.0 license.
% If you use this code in any way for research that
% results in a publication, please cite the above paper
%
% =========================================================================
dataPath = [pwd, '/Data'];
simFolderPath = [dataPath, '/', simFolderName];
delimiter = regexp(simFolderName, '_');
resultFileName = [simFolderPath, '/results_', simFolderName(delimiter(1)+1:delimiter(end)-1), '.mat'];
load(resultFileName);
precoders = resultStruct{caseNr}.precoders;
snrsDb = resultStruct{caseNr}.snrDb;
end