-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathgetWfPrecoder.m
63 lines (56 loc) · 1.78 KB
/
getWfPrecoder.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
function G = getWfPrecoder(H)
%
% GETWFPRECODER Capacity-achieving precoder, computed according to the
% water-filling solution originally proposed in:
% M. C. Cover and J.A. Thomas, Elements of Information Theory, New York:
% Wiley, 1991.
%
% Inputs: mat H = MIMO channel matrix
% Outputs: mat G = linear precoding matrix
%
% Max Girnyk
% Stockholm, 2014-10-01
%
% =========================================================================
%
% This Matlab script produces results used in the following paper:
%
% M. A. Girnyk, "Deep-learning based linear precoding for MIMO channels
% with finite-alphabet signaling," Physical Communication 48(2021) 101402
%
% Paper URL: https://arxiv.org/abs/2111.03504
%
% Version: 1.0 (modified 2021-11-14)
%
% License: This code is licensed under the Apache-2.0 license.
% If you use this code in any way for research that
% results in a publication, please cite the above paper
%
% =========================================================================
% Channel mat sizes
[N, M] = size(H);
K = min(M, N);
L = max(M, N);
% Container for eigenvalues
X = NaN(K, K);
% SVD of the channel matrix
[~, S, V] = svd(H, 'econ');
lambdaH = diag(S);
lambdaP = (K + sum(1./(lambdaH.^2)))/K - 1./(lambdaH.^2);
% Water filling
canGoOn = 1;
while canGoOn
negativeIdx = find(lambdaP<=0);
positiveIdx = find(lambdaP>0);
lambdaP(negativeIdx) = 0;
newM = length(positiveIdx);
lambdaHnew = lambdaH(positiveIdx);
lambdaPtemp = ( sum(1./(lambdaHnew.^2)) + K )/newM - 1./(lambdaHnew.^2);
lambdaP(positiveIdx) = lambdaPtemp;
canGoOn = ~isempty( find(lambdaP < 0, 1) );
end % while canGoOn
Y = diag(lambdaP);
X(1:K, 1:K) = Y(1:K, 1:K);
% Capacity-achieving linear precoder
G = V * sqrt(X);
end