-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathoptimizePrecoderGivenChannelMimoMl.m
124 lines (104 loc) · 4.37 KB
/
optimizePrecoderGivenChannelMimoMl.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
function optimizePrecoderGivenChannelMimoMl(simParamFilePath)
%
% OPTIMIZEPRECODERGIVENCHANNELMIMOML Optimize/predict precoder using a
% trained neural net.
%
% Inputs: str simParamFilePath = path of the m-file with params
% Outputs: --
%
% Max Girnyk
% Stockholm, 2014-10-01
%
% =========================================================================
%
% This Matlab script produces results used in the following paper:
%
% M. A. Girnyk, "Deep-learning based linear precoding for MIMO channels
% with finite-alphabet signaling," Physical Communication 48(2021) 101402
%
% Paper URL: https://arxiv.org/abs/2111.03504
%
% Version: 1.0 (modified 2021-11-14)
%
% License: This code is licensed under the Apache-2.0 license.
% If you use this code in any way for research that
% results in a publication, please cite the above paper
%
% =========================================================================
% Load inputParamStruct ---------------------------------------------------
load(simParamFilePath);
% Channel-related params --------------------------------------------------
snrIdxCurrent = simCaseStruct.channel.snrIdxCurrent;
channelMat = simCaseStruct.channel.channelMats{snrIdxCurrent};
nTxAntennas = simCaseStruct.channel.nTxAntennas;
snrDb = simCaseStruct.channel.snrDbVec(snrIdxCurrent);
simName = simCaseStruct.cluster.simName;
caseIdx = simCaseStruct.cluster.caseIdx;
nOrderCasesMax = simCaseStruct.cluster.nOrderCasesMax;
caseIdxTag = convertNumberToCaseIdxTag(caseIdx, nOrderCasesMax);
caseId = [simName, '_', caseIdxTag]; % ID for the sim case
simFolderPath = simCaseStruct.cluster.simFolderPath;
simCaseSubfolderPath = [simFolderPath, '\', caseId];
% Signal-related params ---------------------------------------------------
typeModulation = simCaseStruct.signaling.typeModulation;
% Cluster-related params --------------------------------------------------
evaluateTrueMiMeanwhile = simCaseStruct.cluster.evaluateTrueMiMeanwhile;
% Create the case subfolder
if (~exist(simCaseSubfolderPath))
mkdir(simCaseSubfolderPath);
end
% Path to trained neural nets
netsPath = [pwd, '\TrainedNets'];
switch typeModulation
case 'BPSK'
switch nTxAntennas
case 2
load([netsPath, '\nnWeightsBpsk2x2Mimo.mat']);
case 3
load([netsPath, '\nnWeightsBpsk3x3Mimo.mat']);
otherwise
error('Unknown antenna stup');
end
case 'QPSK'
switch nTxAntennas
case 2
load([netsPath, '\nnWeightsQpsk3x3Mimo.mat']);
case 3
load([netsPath, '\nnWeightsQpsk3x3Mimo.mat']);
otherwise
error('ERROR! Unknown antenna setup');
end
otherwise
error('ERROR! No trained neural net for this constellation');
end
snr = 10^(snrDb/10);
snrTag = convertNumberToSnrTag(snrDb);
jobId = [caseId, '_', snrTag];
simFileName = ['mi_', jobId];
simFilePath = [simCaseSubfolderPath, '\', simFileName];
matFilePath = [simFilePath, '.mat'];
simCaseStruct.cluster.matFilePath = matFilePath;
simCaseStruct.cluster.status = 'RUNNING';
[~, nTxAntennas] = size(channelMat);
Hmat = sqrt(snr/nTxAntennas) * channelMat;
timeBegin = cputime; % start clock
precoderMatGauss = getWfPrecoder(Hmat);
precoderVecGauss = convertComplexMatToRealVec(precoderMatGauss);
precoderVecPredicted = runFeedforwardPass(neuralNet, precoderVecGauss);
precoderMatPredicted = convertRealVecToComlpexMat(precoderVecPredicted, N, nTxAntennas);
G = precoderMatPredicted * sqrt(nTxAntennas)/sqrt(trace(precoderMatPredicted'*precoderMatPredicted));
timeEnd = cputime; % stop clock
if evaluateTrueMiMeanwhile
[I, ~] = computeMiMimo(Hmat*G, typeModulation, 'TRUE', 'EXHAUSTIVE', 5e3, 7e3);
else
[I, ~] = computeMiMimo(Hmat*G, typeModulation, 'TRUE', 'EXHAUSTIVE', 1e2, 1e3);
end
% Container for precoders -------------------------------------------------
simCaseStruct.precoding.precoderReal = real(G);
simCaseStruct.precoding.precoderImag = imag(G);
% Containers for performance metrics --------------------------------------
simCaseStruct.performance.miBpcu = I;
simCaseStruct.performance.timeElapsedSec = (timeEnd - timeBegin)/60;
simCaseStruct.cluster.status = 'COMPLETED';
% Save all params to file
save(simCaseStruct.cluster.matFilePath, 'simCaseStruct');