-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathoptimizePrecoderMimoGauss.m
91 lines (76 loc) · 3.33 KB
/
optimizePrecoderMimoGauss.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
function precoder = optimizePrecoderMimoGauss(simCaseStruct)
%
% OPTIMIZEPRECODERMIMOGAUSS Water-filling based precoder for maximizing
% the achievable rates for a MIMO channel with Gaussian inputs.
%
% Inputs: struct simCaseStruct = struct of sim case params
% Outputs: mat precoder = linear precoding matrix
%
% Max Girnyk
% Stockholm, 2014-10-01
%
% =========================================================================
%
% This Matlab script produces results used in the following paper:
%
% M. A. Girnyk, "Deep-learning based linear precoding for MIMO channels
% with finite-alphabet signaling," Physical Communication 48(2021) 101402
%
% Paper URL: https://arxiv.org/abs/2111.03504
%
% Version: 1.0 (modified 2021-11-14)
%
% License: This code is licensed under the Apache-2.0 license.
% If you use this code in any way for research that
% results in a publication, please cite the above paper
%
% =========================================================================
% Cluster-related params --------------------------------------------------
simName = simCaseStruct.cluster.simName;
caseIdx = simCaseStruct.cluster.caseIdx;
nOrderCasesMax = simCaseStruct.cluster.nOrderCasesMax;
caseIdxTag = convertNumberToCaseIdxTag(caseIdx, nOrderCasesMax);
caseId = [simName, '_', caseIdxTag]; % ID for the sim case
simFolderPath = simCaseStruct.cluster.simFolderPath;
simCaseSubfolderPath = [simFolderPath, '\', caseId];
% Channel-related params --------------------------------------------------
snrDbVec = simCaseStruct.channel.snrDbVec;
nSnrDb = length(snrDbVec);
% Create the case subfolder
if (~exist(simCaseSubfolderPath))
mkdir(simCaseSubfolderPath);
end
% Loop over SNRs ----------------------------------------------------------
for iSnrDb = 1 : nSnrDb
% SNR value in linear scale
snrDb = snrDbVec(iSnrDb);
simCaseStruct.channel.currentSnrDb = snrDb;
snr = 10^(snrDb/10);
snrTag = convertNumberToSnrTag(snrDb);
% Sim case formal params
jobId = [caseId, '_', snrTag];
simFileName = ['mi_', jobId];
simFilePath = [simCaseSubfolderPath, '\', simFileName];
matFilePath = [simFilePath, '.mat'];
simCaseStruct.cluster.matFilePath = matFilePath;
simCaseStruct.cluster.status = 'RUNNING';
% Channel matrix
channelMat = simCaseStruct.channel.channelMatReal + 1i*simCaseStruct.channel.channelMatImag;
[~, M] = size(channelMat);
Hmat = sqrt(snr/M) * channelMat;
timeBegin = cputime; % start clock
% Compute water-filling precoder
precoder = getWfPrecoder(Hmat);
timeEnd = cputime; % stop clock
% Performance metrics
I = miMimoGauss(Hmat*precoder);
% Container for precoders -------------------------------------------------
simCaseStruct.precoding.precoderReal = real(precoder);
simCaseStruct.precoding.precoderImag = imag(precoder);
% Containers for performance metrics --------------------------------------
simCaseStruct.performance.miBpcu = I;
simCaseStruct.performance.timeElapsedSec = (timeEnd - timeBegin)/60;
simCaseStruct.cluster.status = 'COMPLETED';
% Save all params to mat-file
save(simCaseStruct.cluster.matFilePath, 'simCaseStruct');
end % for iSnrDb = 1 : nSnrDb