-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathoptimizePrecoderMimoMl.m
134 lines (115 loc) · 5.08 KB
/
optimizePrecoderMimoMl.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
function precoder = optimizePrecoderMimoMl(simCaseStruct)
%
% OPTIMIZEPRECODERMIMOML DL-based approximation of the optimal precoder,
% computed by means of a forward pass thru a trained neural net.
%
% Inputs: struct simCaseStruct = struct of sim case params
% Outputs: mat precoder = linear precoding matrix
%
% Max Girnyk
% Stockholm, 2014-10-01
%
% =========================================================================
%
% This Matlab script produces results used in the following paper:
%
% M. A. Girnyk, "Deep-learning based linear precoding for MIMO channels
% with finite-alphabet signaling," Physical Communication 48(2021) 101402
%
% Paper URL: https://arxiv.org/abs/2111.03504
%
% Version: 1.0 (modified 2021-11-14)
%
% License: This code is licensed under the Apache-2.0 license.
% If you use this code in any way for research that
% results in a publication, please cite the above paper
%
% =========================================================================
% Path to trained neural nets
netsPath = [pwd, '\TrainedNets'];
% Signal-related params ---------------------------------------------------
typeModulation = simCaseStruct.signaling.typeModulation;
% Computation-related params ----------------------------------------------
nItersSignalMi = simCaseStruct.computation.nItersSignalMi;
nItersNoiseMi = simCaseStruct.computation.nItersNoiseMi;
% Cluster-related params --------------------------------------------------
simName = simCaseStruct.cluster.simName;
caseIdx = simCaseStruct.cluster.caseIdx;
nOrderCasesMax = simCaseStruct.cluster.nOrderCasesMax;
caseIdxTag = convertNumberToCaseIdxTag(caseIdx, nOrderCasesMax);
caseId = [simName, '_', caseIdxTag]; % ID for the sim case
simFolderPath = simCaseStruct.cluster.simFolderPath;
simCaseSubfolderPath = [simFolderPath, '\', caseId];
evaluateTrueMiMeanwhile = simCaseStruct.cluster.evaluateTrueMiMeanwhile;
% Channel-related params --------------------------------------------------
snrDbVec = simCaseStruct.channel.snrDbVec;
nSnrDb = length(snrDbVec);
% Create the case subfolder
if (~exist(simCaseSubfolderPath))
mkdir(simCaseSubfolderPath);
end
% Download trained neural net
switch simCaseStruct.signaling.typeModulation
case 'BPSK'
switch simCaseStruct.channel.nTxAntennas
case 2
load([netsPath, '\nnWeightsBpsk2x2Mimo.mat']);
case 3
load([netsPath, '\nnWeightsBpsk3x3Mimo.mat']);
otherwise
error('ERROR! Trained weights for this antenna setup are missing!');
end
case 'QPSK'
switch simCaseStruct.channel.nTxAntennas
case 2
load([netsPath, '\nnWeightsQpsk2x2Mimo.mat']);
case 3
load([netsPath, '\nnWeightsQpsk3x3Mimo.mat']);
otherwise
error('ERROR! Trained weights for this antenna setup are missing!');
end
case '8PSK'
error('ERROR! Trained weights for this antenna setup are missing!');
end
% Loop over SNRs ----------------------------------------------------------
for iSnrDb = 1 : nSnrDb
% SNR value in linear scale
snrDb = snrDbVec(iSnrDb);
simCaseStruct.channel.currentSnrDb = snrDb;
snr = 10^(snrDb/10);
snrTag = convertNumberToSnrTag(snrDb);
% Sim case formal params
jobId = [caseId, '_', snrTag];
simFileName = ['mi_', jobId];
simFilePath = [simCaseSubfolderPath, '\', simFileName];
matFilePath = [simFilePath, '.mat'];
simCaseStruct.cluster.matFilePath = matFilePath;
simCaseStruct.cluster.status = 'RUNNING';
% Channel matrix
channelMat = simCaseStruct.channel.channelMatReal + 1i*simCaseStruct.channel.channelMatImag;
[N, M] = size(channelMat);
Hmat = sqrt(snr/M) * channelMat;
timeBegin = cputime; % start clock
% Predict optimal precoder matrix using forward pass
precoderMatGauss = getWfPrecoder(Hmat);
precoderVecGauss = convertComplexMatToRealVec(precoderMatGauss);
precoderVecPredicted = runFeedforwardPass(neuralNet, precoderVecGauss);
precoderMatPredicted = convertRealVecToComlpexMat(precoderVecPredicted, N, M);
precoder = precoderMatPredicted * sqrt(M)/sqrt(trace(precoderMatPredicted'*precoderMatPredicted));
timeEnd = cputime; % stop clock
% Performance metrics
if evaluateTrueMiMeanwhile
[I, ~] = computeMiMimo(Hmat*precoder, typeModulation, 'TRUE', 'EXHAUSTIVE', 5e3, 7e3);
else
[I, ~] = computeMiMimo(Hmat*precoder, typeModulation, 'TRUE', 'EXHAUSTIVE', nItersSignalMi, nItersNoiseMi);
end
% Container for precoders -------------------------------------------------
simCaseStruct.precoding.precoderReal = real(precoder);
simCaseStruct.precoding.precoderImag = imag(precoder);
% Containers for performance metrics --------------------------------------
simCaseStruct.performance.miBpcu = I;
simCaseStruct.performance.timeElapsedSec = (timeEnd - timeBegin)/60;
simCaseStruct.cluster.status = 'COMPLETED';
% Save all params to mat-file
save(simCaseStruct.cluster.matFilePath, 'simCaseStruct');
end % for iSnrDb = 1 : nSnrDb