forked from habi/latex
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdraw_a_scalebar.py
executable file
·252 lines (232 loc) · 11 KB
/
draw_a_scalebar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#! /usr/bin/env python
"""
Script to generate nice scalebars on images with LaTeX and TikZ.
Ported from https://github.com/habi/latex/blob/master/scalebar.m to Python
The script needs an image and a pixel size as input, then either uses the full
width of the image or a user-defined length (also as input) and calculates all
the necessary values to generate a LaTeX-file as output.
Said LaTeX-file is then compiled with "latexmk" so that - after running the
script - you get an image_scalebar.tex for further editing and an
image_scalebar.pdf as well as image_scalebar.png for use in a talk.
"""
from optparse import OptionParser
import numpy as np
import matplotlib.pyplot as plt
import os
import subprocess
# Use Pythons Optionparser to define and read the options, and also give some
# help to the user
parser = OptionParser()
usage = "usage: %prog [options] arg"
parser.add_option("-i", "--image", dest="Image",
help="Location of the file you want to draw a scalebar on",
metavar="path")
parser.add_option("-p", "--pixelsize", dest="Pixelsize",
type="float",
help="Pixel/voxel size of the image (in micrometers)",
metavar="1.48")
parser.add_option("-l", "--length", dest="Scalebarlength",
type="int",
help="Length of the scale bar you will draw. Generally you "
"know that two features are x pixels afar from each other, "
"then you can use this length, e.g. the tips of your sample "
" are 646 pixels apart...",
metavar="648")
parser.add_option("-f", "--fullscale", dest="fullscale",
default=1,
action="store_true",
help="Use the full image for scaling, do not define a scale "
" bar manually. Makes the '-l' entry obsolete")
(options, args) = parser.parse_args()
# Show help if no parameters are given
if options.Image is None:
parser.print_help()
print("Example:")
print("The command below makes a 500 um long scalebar on a 2D image",\
"'rec.png', which is 1024 x 1014 pixels big (with 2.8 um pixel ",\
"size):")
print()
print(sys.argv[0], "-i /sls/X02DA/data/e13960/test.jpg -p 2.8 -f")
print()
print("The command below makes a 500 um long scalebar on a test-image",\
"'3d.jpg' from which you know that two features are 2170 px apart ",\
"(650 nm px size). The script asks you to click the two points.")
print()
print(sys.argv[0], "-i /sls/X02DA/data/e13960/test.jpg -p 0.65 -l 2170")
print()
sys.exit(1)
# Warn user if options are missing or something else is wrong
if not os.path.exists(options.Image):
print("I cannot find", options.Image, ", please try again.")
sys.exit(1)
if options.Pixelsize is None:
print("You need to enter a pixel size! Please enter your command as this")
print(" ".join(sys.argv), "-p some_micrometers")
sys.exit(1)
if options.Scalebarlength:
# Set fullscale to False if user wants to define a length himself
options.fullscale = False
# Hey ho, let's go
print(80 * "-")
# Display image to user
Image = plt.imread(options.Image)
plt.imshow(Image)
plt.axis('image')
# Either let user choose a set length or use the full scale of the image
if options.fullscale:
print("Using full size of image (" +\
str(Image.shape[1]), "x",\
str(Image.shape[0]), "px @" + \
str(options.Pixelsize), "um) to calculate scalebar")
StartPoint = [(0, Image.shape[0] / 2)]
EndPoint = [(Image.shape[1], Image.shape[0] / 2)]
else:
print()
print("Please click on two points", options.Scalebarlength, "px (@",\
options.Pixelsize, "um) apart, i.e. the length you chose will",\
"be", str(options.Scalebarlength * options.Pixelsize / 1000), "mm")
print()
plt.title(options.Image + "\nClick on start point of " +
str(options.Scalebarlength) + " px long (" +
str(options.Scalebarlength * options.Pixelsize / 1000) +
" mm) line")
StartPoint = plt.ginput(1)
plt.plot(StartPoint[0][0], StartPoint[0][1], marker="o", color="g")
plt.axis('image')
plt.draw()
plt.title(options.Image + "\nClick on end point of " +
str(options.Scalebarlength) + " px long (" +
str(options.Scalebarlength * options.Pixelsize / 1000) +
" mm) line")
plt.draw()
EndPoint = plt.ginput(1)
# Plot the length we are using to calculate
StartPoint = StartPoint[0]
EndPoint = EndPoint[0]
line = [StartPoint, EndPoint]
plt.plot(StartPoint[0], StartPoint[1], marker="o", color="g")
plt.plot(EndPoint[0], EndPoint[1], marker="o", color="r")
plt.plot([StartPoint[0], EndPoint[0]], [StartPoint[1], EndPoint[1]])
plt.axis('image')
# Calculate the stuff we need for drawing a nice scalebar and update the figure
if options.fullscale:
options.Scalebarlength = Image.shape[1]
plt.title(options.Image + "\nThis line is " + str(options.Scalebarlength) +
" px long (" +
str(options.Scalebarlength * options.Pixelsize / 1000) + " mm)")
plt.draw()
ItemLength = 100 # px
SetScaleBarTo = 500 # um
Scale = options.Scalebarlength * options.Pixelsize / 1000
ChosenLength = np.hypot(StartPoint[0] - EndPoint[0],
StartPoint[1] - EndPoint[1])
UnitLength = Scale / ChosenLength * ItemLength * 1000
ScaleBarLength = ItemLength / UnitLength * SetScaleBarTo
# Inform the user
print("The chosen length of", int(round(ChosenLength)), "px corresponds to",\
Scale, "mm.")
print(ItemLength, "px are thus", int(round(UnitLength)), "um")
print(int(round(ScaleBarLength)), "px are thus", SetScaleBarTo, "um and")
print(int(round(ScaleBarLength / (SetScaleBarTo / 100))), "px are thus 100 um")
# Write LaTeX-file
print(80 * "-")
OutputFile = os.path.join(os.getcwd(),
os.path.splitext(os.path.basename(options.Image))
[0] + "_scalebar.tex")
print("writing LaTeX-code to", OutputFile)
outputfile = open(OutputFile, "w")
# PDF and PNG output as per http://tex.stackexchange.com/a/11880/828
outputfile.write("\\documentclass[convert]{standalone}\n")
outputfile.write("\\usepackage{graphicx}\n")
outputfile.write("\\usepackage{tikz}\n")
outputfile.write("\t\\usetikzlibrary{spy}\n")
outputfile.write("\\usepackage{siunitx}\n")
outputfile.write("\\newcommand{\imsize}{\linewidth}\n")
outputfile.write("\\newlength\imagewidth % needed for scalebars\n")
outputfile.write("\\newlength\imagescale % ditto\n")
outputfile.write("\\begin{document}%\n")
outputfile.write("%-------------\n")
outputfile.write("\pgfmathsetlength{\imagewidth}{\imsize}%\n")
outputfile.write("\pgfmathsetlength{\imagescale}{\imagewidth/" +
str(Image.shape[1]) + "}%\n")
outputfile.write("\def\\x{" + str(int(round(Image.shape[1] * 0.618))) +
"}% scalebar-x starting at golden ratio of image width of " +
str(Image.shape[1]) + "px = " +
str(int(round(Image.shape[1] * 0.618))) + "\n")
outputfile.write("\def\y{" + str(int(round(Image.shape[0] * 0.9))) +
"}% scalebar-y at 90% of image height of " +
str(Image.shape[0]) + "px = " +
str(int(round(Image.shape[0] * 0.9))) + "\n")
outputfile.write("\def\mag{4}% magnification of inset\n")
outputfile.write("\def\size{75}% size of inset\n")
outputfile.write("\def\shadow{4}% shadow parameter for scalebar\n")
outputfile.write("\\begin{tikzpicture}[x=\imagescale,y=-\imagescale, spy " +
"using outlines={rectangle, magnification=\mag, " +
"size=\size, connect spies}]\n")
outputfile.write("\t\\begin{scope}\n")
outputfile.write("\t\t\clip (0,0) rectangle (" + str(Image.shape[1]) + "," +
str(Image.shape[0]) + ");\n")
outputfile.write("\t\t%\clip (" + str(Image.shape[1]/2) + "," +
str(Image.shape[0] / 2) + ") circle (" +
str(Image.shape[0] / 2) + ");\n")
outputfile.write("\t\t\\node[anchor=north west, inner sep=0pt, outer " +
"sep=0pt] at (0,0) {\includegraphics[width=\imagewidth]{" +
str(os.path.join(os.path.split(os.path.abspath(
options.Image))[0], '{{' +
os.path.splitext(os.path.basename(options.Image))[0]) +
'}}') + "}};\n")
outputfile.write("\t\\end{scope}\n")
outputfile.write("\t%\spy [red] on (" + str(Image.shape[1] - 300) + "," +
str(Image.shape[0] - 300) +
") in node at (0,0) [anchor=north west];\n")
outputfile.write("\t% " + str(int(round(ChosenLength))) + "px = " +
str(Scale) + "mm > " + str(ItemLength) + "px = " +
str(int(round(UnitLength))) + "um > " +
str(int(round(ScaleBarLength))) + "px = " +
str(SetScaleBarTo) + "um, " +
str(int(round(ScaleBarLength / (SetScaleBarTo / 100)))) +
"px = 100um\n")
outputfile.write("\t%\draw[|-|,blue,thick] (" +
str(int(round(StartPoint[0]))) + "," +
str(int(round(StartPoint[1]))) + ") -- (" +
str(int(round(EndPoint[0]))) + "," +
str(int(round(EndPoint[1]))) + ") node [sloped,midway," +
"above,fill=white,semitransparent,text opacity=1] {\SI{" +
str(Scale) + "}{\milli\meter} (" +
str(int(round(ChosenLength))) + "px) TEMPORARY!};\n")
outputfile.write("\t\draw[|-|,thick] (\\x+\shadow,\y+\shadow) -- (\\x+" +
str(int(round(ScaleBarLength))) + "+\shadow,\y+\shadow) " +
"node [midway, above] {\SI{" + str(SetScaleBarTo) +
"}{\micro\meter}};\n")
outputfile.write("\t\draw[|-|,white,thick] (\\x,\y) -- (\\x+" +
str(int(round(ScaleBarLength))) + ",\y) node [midway,above]" +
" {\SI{" + str(SetScaleBarTo) + "}{\micro\meter}};\n")
outputfile.write("\t%\draw[color=red, anchor=south west] (0," +
str(int(round(Image.shape[0]))) + ") node [fill=white, " +
"semitransparent] {Legend} node {Legend};\n")
outputfile.write("\end{tikzpicture}%\n")
outputfile.write("%-------------\n")
outputfile.write("\end{document}%\n")
outputfile.close()
# Show/Update figure
plt.pause(0.001)
plt.draw()
# Compile LaTeX-file and cleanup afterwards
nirvana = open(os.devnull, "w")
print("compiling", OutputFile)
# Compile file with latexmk.
# This gives us a .PNG, .PDF and an error message, which we disregard
subprocess.call(['latexmk', '-pdf', '-f', '-silent',
'-latexoption=--shell-escape', OutputFile], stdout=nirvana)
# cleanup after compilation
print("cleaning up")
subprocess.call(['latexmk', '-c', OutputFile], stdout=nirvana)
nirvana.close()
# Inform the user what has been going on and make sure we show image
print(80 * "-")
print("You now have three files (" + OutputFile + " and .../" +\
os.path.basename(OutputFile)[:-3] + "pdf and .png).")
print("The .tex-file is for further editing and the two other files can be "\
"used as is a PowerPoint or Keynote slide...")
# Keep the figure open
plt.show()