forked from digitalbazaar/forge
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtls.js
4282 lines (3951 loc) · 130 KB
/
tls.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
* A Javascript implementation of Transport Layer Security (TLS).
*
* @author Dave Longley
*
* Copyright (c) 2009-2014 Digital Bazaar, Inc.
*
* The TLS Handshake Protocol involves the following steps:
*
* - Exchange hello messages to agree on algorithms, exchange random values,
* and check for session resumption.
*
* - Exchange the necessary cryptographic parameters to allow the client and
* server to agree on a premaster secret.
*
* - Exchange certificates and cryptographic information to allow the client
* and server to authenticate themselves.
*
* - Generate a master secret from the premaster secret and exchanged random
* values.
*
* - Provide security parameters to the record layer.
*
* - Allow the client and server to verify that their peer has calculated the
* same security parameters and that the handshake occurred without tampering
* by an attacker.
*
* Up to 4 different messages may be sent during a key exchange. The server
* certificate, the server key exchange, the client certificate, and the
* client key exchange.
*
* A typical handshake (from the client's perspective).
*
* 1. Client sends ClientHello.
* 2. Client receives ServerHello.
* 3. Client receives optional Certificate.
* 4. Client receives optional ServerKeyExchange.
* 5. Client receives ServerHelloDone.
* 6. Client sends optional Certificate.
* 7. Client sends ClientKeyExchange.
* 8. Client sends optional CertificateVerify.
* 9. Client sends ChangeCipherSpec.
* 10. Client sends Finished.
* 11. Client receives ChangeCipherSpec.
* 12. Client receives Finished.
* 13. Client sends/receives application data.
*
* To reuse an existing session:
*
* 1. Client sends ClientHello with session ID for reuse.
* 2. Client receives ServerHello with same session ID if reusing.
* 3. Client receives ChangeCipherSpec message if reusing.
* 4. Client receives Finished.
* 5. Client sends ChangeCipherSpec.
* 6. Client sends Finished.
*
* Note: Client ignores HelloRequest if in the middle of a handshake.
*
* Record Layer:
*
* The record layer fragments information blocks into TLSPlaintext records
* carrying data in chunks of 2^14 bytes or less. Client message boundaries are
* not preserved in the record layer (i.e., multiple client messages of the
* same ContentType MAY be coalesced into a single TLSPlaintext record, or a
* single message MAY be fragmented across several records).
*
* struct {
* uint8 major;
* uint8 minor;
* } ProtocolVersion;
*
* struct {
* ContentType type;
* ProtocolVersion version;
* uint16 length;
* opaque fragment[TLSPlaintext.length];
* } TLSPlaintext;
*
* type:
* The higher-level protocol used to process the enclosed fragment.
*
* version:
* The version of the protocol being employed. TLS Version 1.2 uses version
* {3, 3}. TLS Version 1.0 uses version {3, 1}. Note that a client that
* supports multiple versions of TLS may not know what version will be
* employed before it receives the ServerHello.
*
* length:
* The length (in bytes) of the following TLSPlaintext.fragment. The length
* MUST NOT exceed 2^14 = 16384 bytes.
*
* fragment:
* The application data. This data is transparent and treated as an
* independent block to be dealt with by the higher-level protocol specified
* by the type field.
*
* Implementations MUST NOT send zero-length fragments of Handshake, Alert, or
* ChangeCipherSpec content types. Zero-length fragments of Application data
* MAY be sent as they are potentially useful as a traffic analysis
* countermeasure.
*
* Note: Data of different TLS record layer content types MAY be interleaved.
* Application data is generally of lower precedence for transmission than
* other content types. However, records MUST be delivered to the network in
* the same order as they are protected by the record layer. Recipients MUST
* receive and process interleaved application layer traffic during handshakes
* subsequent to the first one on a connection.
*
* struct {
* ContentType type; // same as TLSPlaintext.type
* ProtocolVersion version;// same as TLSPlaintext.version
* uint16 length;
* opaque fragment[TLSCompressed.length];
* } TLSCompressed;
*
* length:
* The length (in bytes) of the following TLSCompressed.fragment.
* The length MUST NOT exceed 2^14 + 1024.
*
* fragment:
* The compressed form of TLSPlaintext.fragment.
*
* Note: A CompressionMethod.null operation is an identity operation; no fields
* are altered. In this implementation, since no compression is supported,
* uncompressed records are always the same as compressed records.
*
* Encryption Information:
*
* The encryption and MAC functions translate a TLSCompressed structure into a
* TLSCiphertext. The decryption functions reverse the process. The MAC of the
* record also includes a sequence number so that missing, extra, or repeated
* messages are detectable.
*
* struct {
* ContentType type;
* ProtocolVersion version;
* uint16 length;
* select (SecurityParameters.cipher_type) {
* case stream: GenericStreamCipher;
* case block: GenericBlockCipher;
* case aead: GenericAEADCipher;
* } fragment;
* } TLSCiphertext;
*
* type:
* The type field is identical to TLSCompressed.type.
*
* version:
* The version field is identical to TLSCompressed.version.
*
* length:
* The length (in bytes) of the following TLSCiphertext.fragment.
* The length MUST NOT exceed 2^14 + 2048.
*
* fragment:
* The encrypted form of TLSCompressed.fragment, with the MAC.
*
* Note: Only CBC Block Ciphers are supported by this implementation.
*
* The TLSCompressed.fragment structures are converted to/from block
* TLSCiphertext.fragment structures.
*
* struct {
* opaque IV[SecurityParameters.record_iv_length];
* block-ciphered struct {
* opaque content[TLSCompressed.length];
* opaque MAC[SecurityParameters.mac_length];
* uint8 padding[GenericBlockCipher.padding_length];
* uint8 padding_length;
* };
* } GenericBlockCipher;
*
* The MAC is generated as described in Section 6.2.3.1.
*
* IV:
* The Initialization Vector (IV) SHOULD be chosen at random, and MUST be
* unpredictable. Note that in versions of TLS prior to 1.1, there was no
* IV field, and the last ciphertext block of the previous record (the "CBC
* residue") was used as the IV. This was changed to prevent the attacks
* described in [CBCATT]. For block ciphers, the IV length is of length
* SecurityParameters.record_iv_length, which is equal to the
* SecurityParameters.block_size.
*
* padding:
* Padding that is added to force the length of the plaintext to be an
* integral multiple of the block cipher's block length. The padding MAY be
* any length up to 255 bytes, as long as it results in the
* TLSCiphertext.length being an integral multiple of the block length.
* Lengths longer than necessary might be desirable to frustrate attacks on
* a protocol that are based on analysis of the lengths of exchanged
* messages. Each uint8 in the padding data vector MUST be filled with the
* padding length value. The receiver MUST check this padding and MUST use
* the bad_record_mac alert to indicate padding errors.
*
* padding_length:
* The padding length MUST be such that the total size of the
* GenericBlockCipher structure is a multiple of the cipher's block length.
* Legal values range from zero to 255, inclusive. This length specifies the
* length of the padding field exclusive of the padding_length field itself.
*
* The encrypted data length (TLSCiphertext.length) is one more than the sum of
* SecurityParameters.block_length, TLSCompressed.length,
* SecurityParameters.mac_length, and padding_length.
*
* Example: If the block length is 8 bytes, the content length
* (TLSCompressed.length) is 61 bytes, and the MAC length is 20 bytes, then the
* length before padding is 82 bytes (this does not include the IV. Thus, the
* padding length modulo 8 must be equal to 6 in order to make the total length
* an even multiple of 8 bytes (the block length). The padding length can be
* 6, 14, 22, and so on, through 254. If the padding length were the minimum
* necessary, 6, the padding would be 6 bytes, each containing the value 6.
* Thus, the last 8 octets of the GenericBlockCipher before block encryption
* would be xx 06 06 06 06 06 06 06, where xx is the last octet of the MAC.
*
* Note: With block ciphers in CBC mode (Cipher Block Chaining), it is critical
* that the entire plaintext of the record be known before any ciphertext is
* transmitted. Otherwise, it is possible for the attacker to mount the attack
* described in [CBCATT].
*
* Implementation note: Canvel et al. [CBCTIME] have demonstrated a timing
* attack on CBC padding based on the time required to compute the MAC. In
* order to defend against this attack, implementations MUST ensure that
* record processing time is essentially the same whether or not the padding
* is correct. In general, the best way to do this is to compute the MAC even
* if the padding is incorrect, and only then reject the packet. For instance,
* if the pad appears to be incorrect, the implementation might assume a
* zero-length pad and then compute the MAC. This leaves a small timing
* channel, since MAC performance depends, to some extent, on the size of the
* data fragment, but it is not believed to be large enough to be exploitable,
* due to the large block size of existing MACs and the small size of the
* timing signal.
*/
var forge = require('./forge');
require('./asn1');
require('./hmac');
require('./md5');
require('./pem');
require('./pki');
require('./random');
require('./sha1');
require('./util');
/**
* Generates pseudo random bytes by mixing the result of two hash functions,
* MD5 and SHA-1.
*
* prf_TLS1(secret, label, seed) =
* P_MD5(S1, label + seed) XOR P_SHA-1(S2, label + seed);
*
* Each P_hash function functions as follows:
*
* P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
* HMAC_hash(secret, A(2) + seed) +
* HMAC_hash(secret, A(3) + seed) + ...
* A() is defined as:
* A(0) = seed
* A(i) = HMAC_hash(secret, A(i-1))
*
* The '+' operator denotes concatenation.
*
* As many iterations A(N) as are needed are performed to generate enough
* pseudo random byte output. If an iteration creates more data than is
* necessary, then it is truncated.
*
* Therefore:
* A(1) = HMAC_hash(secret, A(0))
* = HMAC_hash(secret, seed)
* A(2) = HMAC_hash(secret, A(1))
* = HMAC_hash(secret, HMAC_hash(secret, seed))
*
* Therefore:
* P_hash(secret, seed) =
* HMAC_hash(secret, HMAC_hash(secret, A(0)) + seed) +
* HMAC_hash(secret, HMAC_hash(secret, A(1)) + seed) +
* ...
*
* Therefore:
* P_hash(secret, seed) =
* HMAC_hash(secret, HMAC_hash(secret, seed) + seed) +
* HMAC_hash(secret, HMAC_hash(secret, HMAC_hash(secret, seed)) + seed) +
* ...
*
* @param secret the secret to use.
* @param label the label to use.
* @param seed the seed value to use.
* @param length the number of bytes to generate.
*
* @return the pseudo random bytes in a byte buffer.
*/
var prf_TLS1 = function(secret, label, seed, length) {
var rval = forge.util.createBuffer();
/* For TLS 1.0, the secret is split in half, into two secrets of equal
length. If the secret has an odd length then the last byte of the first
half will be the same as the first byte of the second. The length of the
two secrets is half of the secret rounded up. */
var idx = (secret.length >> 1);
var slen = idx + (secret.length & 1);
var s1 = secret.substr(0, slen);
var s2 = secret.substr(idx, slen);
var ai = forge.util.createBuffer();
var hmac = forge.hmac.create();
seed = label + seed;
// determine the number of iterations that must be performed to generate
// enough output bytes, md5 creates 16 byte hashes, sha1 creates 20
var md5itr = Math.ceil(length / 16);
var sha1itr = Math.ceil(length / 20);
// do md5 iterations
hmac.start('MD5', s1);
var md5bytes = forge.util.createBuffer();
ai.putBytes(seed);
for(var i = 0; i < md5itr; ++i) {
// HMAC_hash(secret, A(i-1))
hmac.start(null, null);
hmac.update(ai.getBytes());
ai.putBuffer(hmac.digest());
// HMAC_hash(secret, A(i) + seed)
hmac.start(null, null);
hmac.update(ai.bytes() + seed);
md5bytes.putBuffer(hmac.digest());
}
// do sha1 iterations
hmac.start('SHA1', s2);
var sha1bytes = forge.util.createBuffer();
ai.clear();
ai.putBytes(seed);
for(var i = 0; i < sha1itr; ++i) {
// HMAC_hash(secret, A(i-1))
hmac.start(null, null);
hmac.update(ai.getBytes());
ai.putBuffer(hmac.digest());
// HMAC_hash(secret, A(i) + seed)
hmac.start(null, null);
hmac.update(ai.bytes() + seed);
sha1bytes.putBuffer(hmac.digest());
}
// XOR the md5 bytes with the sha1 bytes
rval.putBytes(forge.util.xorBytes(
md5bytes.getBytes(), sha1bytes.getBytes(), length));
return rval;
};
/**
* Generates pseudo random bytes using a SHA256 algorithm. For TLS 1.2.
*
* @param secret the secret to use.
* @param label the label to use.
* @param seed the seed value to use.
* @param length the number of bytes to generate.
*
* @return the pseudo random bytes in a byte buffer.
*/
var prf_sha256 = function(secret, label, seed, length) {
// FIXME: implement me for TLS 1.2
};
/**
* Gets a MAC for a record using the SHA-1 hash algorithm.
*
* @param key the mac key.
* @param state the sequence number (array of two 32-bit integers).
* @param record the record.
*
* @return the sha-1 hash (20 bytes) for the given record.
*/
var hmac_sha1 = function(key, seqNum, record) {
/* MAC is computed like so:
HMAC_hash(
key, seqNum +
TLSCompressed.type +
TLSCompressed.version +
TLSCompressed.length +
TLSCompressed.fragment)
*/
var hmac = forge.hmac.create();
hmac.start('SHA1', key);
var b = forge.util.createBuffer();
b.putInt32(seqNum[0]);
b.putInt32(seqNum[1]);
b.putByte(record.type);
b.putByte(record.version.major);
b.putByte(record.version.minor);
b.putInt16(record.length);
b.putBytes(record.fragment.bytes());
hmac.update(b.getBytes());
return hmac.digest().getBytes();
};
/**
* Compresses the TLSPlaintext record into a TLSCompressed record using the
* deflate algorithm.
*
* @param c the TLS connection.
* @param record the TLSPlaintext record to compress.
* @param s the ConnectionState to use.
*
* @return true on success, false on failure.
*/
var deflate = function(c, record, s) {
var rval = false;
try {
var bytes = c.deflate(record.fragment.getBytes());
record.fragment = forge.util.createBuffer(bytes);
record.length = bytes.length;
rval = true;
} catch(ex) {
// deflate error, fail out
}
return rval;
};
/**
* Decompresses the TLSCompressed record into a TLSPlaintext record using the
* deflate algorithm.
*
* @param c the TLS connection.
* @param record the TLSCompressed record to decompress.
* @param s the ConnectionState to use.
*
* @return true on success, false on failure.
*/
var inflate = function(c, record, s) {
var rval = false;
try {
var bytes = c.inflate(record.fragment.getBytes());
record.fragment = forge.util.createBuffer(bytes);
record.length = bytes.length;
rval = true;
} catch(ex) {
// inflate error, fail out
}
return rval;
};
/**
* Reads a TLS variable-length vector from a byte buffer.
*
* Variable-length vectors are defined by specifying a subrange of legal
* lengths, inclusively, using the notation <floor..ceiling>. When these are
* encoded, the actual length precedes the vector's contents in the byte
* stream. The length will be in the form of a number consuming as many bytes
* as required to hold the vector's specified maximum (ceiling) length. A
* variable-length vector with an actual length field of zero is referred to
* as an empty vector.
*
* @param b the byte buffer.
* @param lenBytes the number of bytes required to store the length.
*
* @return the resulting byte buffer.
*/
var readVector = function(b, lenBytes) {
var len = 0;
switch(lenBytes) {
case 1:
len = b.getByte();
break;
case 2:
len = b.getInt16();
break;
case 3:
len = b.getInt24();
break;
case 4:
len = b.getInt32();
break;
}
// read vector bytes into a new buffer
return forge.util.createBuffer(b.getBytes(len));
};
/**
* Writes a TLS variable-length vector to a byte buffer.
*
* @param b the byte buffer.
* @param lenBytes the number of bytes required to store the length.
* @param v the byte buffer vector.
*/
var writeVector = function(b, lenBytes, v) {
// encode length at the start of the vector, where the number of bytes for
// the length is the maximum number of bytes it would take to encode the
// vector's ceiling
b.putInt(v.length(), lenBytes << 3);
b.putBuffer(v);
};
/**
* The tls implementation.
*/
var tls = {};
/**
* Version: TLS 1.2 = 3.3, TLS 1.1 = 3.2, TLS 1.0 = 3.1. Both TLS 1.1 and
* TLS 1.2 were still too new (ie: openSSL didn't implement them) at the time
* of this implementation so TLS 1.0 was implemented instead.
*/
tls.Versions = {
TLS_1_0: {major: 3, minor: 1},
TLS_1_1: {major: 3, minor: 2},
TLS_1_2: {major: 3, minor: 3}
};
tls.SupportedVersions = [
tls.Versions.TLS_1_1,
tls.Versions.TLS_1_0
];
tls.Version = tls.SupportedVersions[0];
/**
* Maximum fragment size. True maximum is 16384, but we fragment before that
* to allow for unusual small increases during compression.
*/
tls.MaxFragment = 16384 - 1024;
/**
* Whether this entity is considered the "client" or "server".
* enum { server, client } ConnectionEnd;
*/
tls.ConnectionEnd = {
server: 0,
client: 1
};
/**
* Pseudo-random function algorithm used to generate keys from the master
* secret.
* enum { tls_prf_sha256 } PRFAlgorithm;
*/
tls.PRFAlgorithm = {
tls_prf_sha256: 0
};
/**
* Bulk encryption algorithms.
* enum { null, rc4, des3, aes } BulkCipherAlgorithm;
*/
tls.BulkCipherAlgorithm = {
none: null,
rc4: 0,
des3: 1,
aes: 2
};
/**
* Cipher types.
* enum { stream, block, aead } CipherType;
*/
tls.CipherType = {
stream: 0,
block: 1,
aead: 2
};
/**
* MAC (Message Authentication Code) algorithms.
* enum { null, hmac_md5, hmac_sha1, hmac_sha256,
* hmac_sha384, hmac_sha512} MACAlgorithm;
*/
tls.MACAlgorithm = {
none: null,
hmac_md5: 0,
hmac_sha1: 1,
hmac_sha256: 2,
hmac_sha384: 3,
hmac_sha512: 4
};
/**
* Compression algorithms.
* enum { null(0), deflate(1), (255) } CompressionMethod;
*/
tls.CompressionMethod = {
none: 0,
deflate: 1
};
/**
* TLS record content types.
* enum {
* change_cipher_spec(20), alert(21), handshake(22),
* application_data(23), (255)
* } ContentType;
*/
tls.ContentType = {
change_cipher_spec: 20,
alert: 21,
handshake: 22,
application_data: 23,
heartbeat: 24
};
/**
* TLS handshake types.
* enum {
* hello_request(0), client_hello(1), server_hello(2),
* certificate(11), server_key_exchange (12),
* certificate_request(13), server_hello_done(14),
* certificate_verify(15), client_key_exchange(16),
* finished(20), (255)
* } HandshakeType;
*/
tls.HandshakeType = {
hello_request: 0,
client_hello: 1,
server_hello: 2,
certificate: 11,
server_key_exchange: 12,
certificate_request: 13,
server_hello_done: 14,
certificate_verify: 15,
client_key_exchange: 16,
finished: 20
};
/**
* TLS Alert Protocol.
*
* enum { warning(1), fatal(2), (255) } AlertLevel;
*
* enum {
* close_notify(0),
* unexpected_message(10),
* bad_record_mac(20),
* decryption_failed(21),
* record_overflow(22),
* decompression_failure(30),
* handshake_failure(40),
* bad_certificate(42),
* unsupported_certificate(43),
* certificate_revoked(44),
* certificate_expired(45),
* certificate_unknown(46),
* illegal_parameter(47),
* unknown_ca(48),
* access_denied(49),
* decode_error(50),
* decrypt_error(51),
* export_restriction(60),
* protocol_version(70),
* insufficient_security(71),
* internal_error(80),
* user_canceled(90),
* no_renegotiation(100),
* (255)
* } AlertDescription;
*
* struct {
* AlertLevel level;
* AlertDescription description;
* } Alert;
*/
tls.Alert = {};
tls.Alert.Level = {
warning: 1,
fatal: 2
};
tls.Alert.Description = {
close_notify: 0,
unexpected_message: 10,
bad_record_mac: 20,
decryption_failed: 21,
record_overflow: 22,
decompression_failure: 30,
handshake_failure: 40,
bad_certificate: 42,
unsupported_certificate: 43,
certificate_revoked: 44,
certificate_expired: 45,
certificate_unknown: 46,
illegal_parameter: 47,
unknown_ca: 48,
access_denied: 49,
decode_error: 50,
decrypt_error: 51,
export_restriction: 60,
protocol_version: 70,
insufficient_security: 71,
internal_error: 80,
user_canceled: 90,
no_renegotiation: 100
};
/**
* TLS Heartbeat Message types.
* enum {
* heartbeat_request(1),
* heartbeat_response(2),
* (255)
* } HeartbeatMessageType;
*/
tls.HeartbeatMessageType = {
heartbeat_request: 1,
heartbeat_response: 2
};
/**
* Supported cipher suites.
*/
tls.CipherSuites = {};
/**
* Gets a supported cipher suite from its 2 byte ID.
*
* @param twoBytes two bytes in a string.
*
* @return the matching supported cipher suite or null.
*/
tls.getCipherSuite = function(twoBytes) {
var rval = null;
for(var key in tls.CipherSuites) {
var cs = tls.CipherSuites[key];
if(cs.id[0] === twoBytes.charCodeAt(0) &&
cs.id[1] === twoBytes.charCodeAt(1)) {
rval = cs;
break;
}
}
return rval;
};
/**
* Called when an unexpected record is encountered.
*
* @param c the connection.
* @param record the record.
*/
tls.handleUnexpected = function(c, record) {
// if connection is client and closed, ignore unexpected messages
var ignore = (!c.open && c.entity === tls.ConnectionEnd.client);
if(!ignore) {
c.error(c, {
message: 'Unexpected message. Received TLS record out of order.',
send: true,
alert: {
level: tls.Alert.Level.fatal,
description: tls.Alert.Description.unexpected_message
}
});
}
};
/**
* Called when a client receives a HelloRequest record.
*
* @param c the connection.
* @param record the record.
* @param length the length of the handshake message.
*/
tls.handleHelloRequest = function(c, record, length) {
// ignore renegotiation requests from the server during a handshake, but
// if handshaking, send a warning alert that renegotation is denied
if(!c.handshaking && c.handshakes > 0) {
// send alert warning
tls.queue(c, tls.createAlert(c, {
level: tls.Alert.Level.warning,
description: tls.Alert.Description.no_renegotiation
}));
tls.flush(c);
}
// continue
c.process();
};
/**
* Parses a hello message from a ClientHello or ServerHello record.
*
* @param record the record to parse.
*
* @return the parsed message.
*/
tls.parseHelloMessage = function(c, record, length) {
var msg = null;
var client = (c.entity === tls.ConnectionEnd.client);
// minimum of 38 bytes in message
if(length < 38) {
c.error(c, {
message: client ?
'Invalid ServerHello message. Message too short.' :
'Invalid ClientHello message. Message too short.',
send: true,
alert: {
level: tls.Alert.Level.fatal,
description: tls.Alert.Description.illegal_parameter
}
});
} else {
// use 'remaining' to calculate # of remaining bytes in the message
var b = record.fragment;
var remaining = b.length();
msg = {
version: {
major: b.getByte(),
minor: b.getByte()
},
random: forge.util.createBuffer(b.getBytes(32)),
session_id: readVector(b, 1),
extensions: []
};
if(client) {
msg.cipher_suite = b.getBytes(2);
msg.compression_method = b.getByte();
} else {
msg.cipher_suites = readVector(b, 2);
msg.compression_methods = readVector(b, 1);
}
// read extensions if there are any bytes left in the message
remaining = length - (remaining - b.length());
if(remaining > 0) {
// parse extensions
var exts = readVector(b, 2);
while(exts.length() > 0) {
msg.extensions.push({
type: [exts.getByte(), exts.getByte()],
data: readVector(exts, 2)
});
}
// TODO: make extension support modular
if(!client) {
for(var i = 0; i < msg.extensions.length; ++i) {
var ext = msg.extensions[i];
// support SNI extension
if(ext.type[0] === 0x00 && ext.type[1] === 0x00) {
// get server name list
var snl = readVector(ext.data, 2);
while(snl.length() > 0) {
// read server name type
var snType = snl.getByte();
// only HostName type (0x00) is known, break out if
// another type is detected
if(snType !== 0x00) {
break;
}
// add host name to server name list
c.session.extensions.server_name.serverNameList.push(
readVector(snl, 2).getBytes());
}
}
}
}
}
// version already set, do not allow version change
if(c.session.version) {
if(msg.version.major !== c.session.version.major ||
msg.version.minor !== c.session.version.minor) {
return c.error(c, {
message: 'TLS version change is disallowed during renegotiation.',
send: true,
alert: {
level: tls.Alert.Level.fatal,
description: tls.Alert.Description.protocol_version
}
});
}
}
// get the chosen (ServerHello) cipher suite
if(client) {
// FIXME: should be checking configured acceptable cipher suites
c.session.cipherSuite = tls.getCipherSuite(msg.cipher_suite);
} else {
// get a supported preferred (ClientHello) cipher suite
// choose the first supported cipher suite
var tmp = forge.util.createBuffer(msg.cipher_suites.bytes());
while(tmp.length() > 0) {
// FIXME: should be checking configured acceptable suites
// cipher suites take up 2 bytes
c.session.cipherSuite = tls.getCipherSuite(tmp.getBytes(2));
if(c.session.cipherSuite !== null) {
break;
}
}
}
// cipher suite not supported
if(c.session.cipherSuite === null) {
return c.error(c, {
message: 'No cipher suites in common.',
send: true,
alert: {
level: tls.Alert.Level.fatal,
description: tls.Alert.Description.handshake_failure
},
cipherSuite: forge.util.bytesToHex(msg.cipher_suite)
});
}
// TODO: handle compression methods
if(client) {
c.session.compressionMethod = msg.compression_method;
} else {
// no compression
c.session.compressionMethod = tls.CompressionMethod.none;
}
}
return msg;
};
/**
* Creates security parameters for the given connection based on the given
* hello message.
*
* @param c the TLS connection.
* @param msg the hello message.
*/
tls.createSecurityParameters = function(c, msg) {
/* Note: security params are from TLS 1.2, some values like prf_algorithm
are ignored for TLS 1.0/1.1 and the builtin as specified in the spec is
used. */
// TODO: handle other options from server when more supported
// get client and server randoms
var client = (c.entity === tls.ConnectionEnd.client);
var msgRandom = msg.random.bytes();
var cRandom = client ? c.session.sp.client_random : msgRandom;
var sRandom = client ? msgRandom : tls.createRandom().getBytes();
// create new security parameters
c.session.sp = {
entity: c.entity,
prf_algorithm: tls.PRFAlgorithm.tls_prf_sha256,
bulk_cipher_algorithm: null,
cipher_type: null,
enc_key_length: null,
block_length: null,
fixed_iv_length: null,
record_iv_length: null,
mac_algorithm: null,
mac_length: null,
mac_key_length: null,
compression_algorithm: c.session.compressionMethod,
pre_master_secret: null,
master_secret: null,
client_random: cRandom,
server_random: sRandom
};
};
/**
* Called when a client receives a ServerHello record.
*
* When a ServerHello message will be sent:
* The server will send this message in response to a client hello message
* when it was able to find an acceptable set of algorithms. If it cannot
* find such a match, it will respond with a handshake failure alert.
*
* uint24 length;
* struct {
* ProtocolVersion server_version;
* Random random;
* SessionID session_id;
* CipherSuite cipher_suite;
* CompressionMethod compression_method;
* select(extensions_present) {
* case false:
* struct {};
* case true:
* Extension extensions<0..2^16-1>;
* };
* } ServerHello;
*
* @param c the connection.
* @param record the record.
* @param length the length of the handshake message.
*/
tls.handleServerHello = function(c, record, length) {
var msg = tls.parseHelloMessage(c, record, length);
if(c.fail) {
return;
}
// ensure server version is compatible
if(msg.version.minor <= c.version.minor) {
c.version.minor = msg.version.minor;
} else {
return c.error(c, {
message: 'Incompatible TLS version.',
send: true,
alert: {
level: tls.Alert.Level.fatal,