Open-AI's DALL-E in Mesh-Tensorflow.
If our this is similarly efficient to GPT-Neo, this repo should be able to train models up to, and larger than, the size of Open-AI's DALL-E (12B params).
No pretrained models... Yet.
git clone https://github.com/EleutherAI/GPTNeo
cd GPTNeo
pip3 install -r requirements.txt
Runs on TPUs, untested on GPUs but should work in theory. The example configs are designed to run on a TPU v3-32 pod.
To set up TPUs, sign up for Google Cloud Platform, and create a storage bucket.
Create your VM through a google shell (https://ssh.cloud.google.com/
) with ctpu up --vm-only
so that it can connect to your Google bucket and TPUs and setup the repo as above.
DALLE needs a pretrained VAE to compress images to tokens. To run the VAE pretraining, adjust the params in configs/vae_example.json
to a glob path pointing to a dataset of jpgs, and adjust image size to the appropriate size.
"dataset": {
"train_path": "gs://neo-datasets/CIFAR-10-images/train/**/*.jpg",
"eval_path": "gs://neo-datasets/CIFAR-10-images/test/**/*.jpg",
"image_size": 32
}
Once this is all set up, create your TPU, then run:
python train_vae.py --tpu your_tpu_name --model vae_example
The training logs image tensors and loss values, to check progress, you can run:
tensorboard --logdir your_model_dir
Once the VAE is pretrained, you can move on to DALL-E.
Currently we are training on a dummy dataset. A public, large-scale dataset for DALL-E is in the works. In the meantime, to generate some dummy data, run:
python data/create_tfrecords.py
This should download CIFAR-10, and generate some random captions to act as text inputs.
Custom datasets should be formatted in a folder, with a jsonl file in the root folder containing caption data and paths to the respective images, as follows:
Folder structure:
data_folder
jsonl_file
folder_1
img1
img2
...
folder_2
img1
img2
...
...
jsonl structure:
{"image_path": folder_1/img1, "caption": "some words"}
{"image_path": folder_2/img2, "caption": "more words"}
...
you can then use the create_paired_dataset
function in data/create_tfrecords.py
to encode the dataset into tfrecords for use in training.
Once the dataset is created, copy it over to your bucket with gsutil:
gsutil cp -r DALLE-tfrecords gs://neo-datasets/
And finally, run training with
python train_dalle.py --tpu your_tpu_name --model dalle_example
VAE:
{
"model_type": "vae",
"dataset": {
"train_path": "gs://neo-datasets/CIFAR-10-images/train/**/*.jpg", # glob path to training images
"eval_path": "gs://neo-datasets/CIFAR-10-images/test/**/*.jpg", # glob path to eval images
"image_size": 32 # size of images (all images will be cropped / padded to this size)
},
"train_batch_size": 32,
"eval_batch_size": 32,
"predict_batch_size": 32,
"steps_per_checkpoint": 1000, # how often to save a checkpoint
"iterations": 500, # number of batches to infeed to the tpu at a time. Must be < steps_per_checkpoint
"train_steps": 100000, # total training steps
"eval_steps": 0, # run evaluation for this many steps every steps_per_checkpoint
"model_path": "gs://neo-models/vae_test2/", # directory in which to save the model
"mesh_shape": "data:16,model:2", # mapping of processors to named dimensions - see mesh-tensorflow repo for more info
"layout": "batch_dim:data", # which named dimensions of the model to split across the mesh - see mesh-tensorflow repo for more info
"num_tokens": 512, # vocab size
"dim": 512,
"hidden_dim": 64, # size of hidden dim
"n_channels": 3, # number of input channels
"bf_16": false, # if true, the model is trained with bfloat16 precision
"lr": 0.001, # learning rate [by default learning rate starts at this value, then decays to 10% of this value over the course of the training]
"num_layers": 3, # number of blocks in the encoder / decoder
"train_gumbel_hard": true, # whether to use hard or soft gumbel_softmax
"eval_gumbel_hard": true
}
DALL-E:
{
"model_type": "dalle",
"dataset": {
"train_path": "gs://neo-datasets/DALLE-tfrecords/*.tfrecords", # glob path to tfrecords data
"eval_path": "gs://neo-datasets/DALLE-tfrecords/*.tfrecords",
"image_size": 32 # size of images (all images will be cropped / padded to this size)
},
"train_batch_size": 32, # see above
"eval_batch_size": 32,
"predict_batch_size": 32,
"steps_per_checkpoint": 1000,
"iterations": 500,
"train_steps": 100000,
"predict_steps": 0,
"eval_steps": 0,
"n_channels": 3,
"bf_16": false,
"lr": 0.001,
"model_path": "gs://neo-models/dalle_test/",
"mesh_shape": "data:16,model:2",
"layout": "batch_dim:data",
"n_embd": 512, # size of embedding dim
"text_vocab_size": 50258, # vocabulary size of the text tokenizer
"image_vocab_size": 512, # vocabulary size of the vae - should equal num_tokens above
"text_seq_len": 256, # length of text inputs (all inputs longer / shorter will be truncated / padded)
"n_layers": 6,
"n_heads": 4, # number of attention heads. For best performance, n_embd / n_heads should equal 128
"vae_model": "vae_example" # path to or name of vae model config
}