Skip to content

Commit 6cda9d2

Browse files
committed
UPDATE: Notations (propositional logic)
1 parent 46a1b4c commit 6cda9d2

File tree

7 files changed

+109
-38
lines changed

7 files changed

+109
-38
lines changed

FA_DM.pdf

4.48 KB
Binary file not shown.

FA_DM.tex

+5-1
Original file line numberDiff line numberDiff line change
@@ -224,10 +224,14 @@
224224
%\clearpage
225225

226226
%\printglossary
227+
227228
\input{\ROOT/notations.tex}
228-
\setcounter{chapter}{0}
229+
229230
\mainmatter
230231
%\part{Content}
232+
\renewcommand{\thechapter}{\arabic{chapter}}
233+
\renewcommand{\thesection}{\arabic{section}}
234+
\renewcommand{\thesubsection}{\arabic{subsection}}
231235
\input{\ROOT/FA_mainmatter.tex}
232236
%\backmatter
233237
%\part{Annex}

bibliography.bib

+7
Original file line numberDiff line numberDiff line change
@@ -24,3 +24,10 @@ @book{AnalyseIII
2424
Volume = {III (in French)},
2525
Year = {1997},
2626
Language={French}}
27+
@book{SpecifyingSystems,
28+
Author = {Lamport, Leslie},
29+
Keywords = {TLA, formal methods, logic},
30+
Publisher = {Addison-Wesley},
31+
Title = {Specifying Systems, The TLA+ Language and Tools for Hardware and Software Engineers},
32+
Year = {2002},
33+
Language={English}}

chapter_1/1_12.tex

+3-2
Original file line numberDiff line numberDiff line change
@@ -19,10 +19,11 @@
1919
\quad (a \in \R, r > 0 ).
2020
\end{align}
2121
%
22-
Next, remark that the mapping $\varphi: \R \to ]\minus 1, 1[$ is odd and that %
22+
Next, remark that the monotonically increasing mapping %
23+
$\varphi: \R \to ]\minus 1, 1[$ is odd and that %
2324
%
2425
\begin{align}\label{1_12_1}
25-
1> \varphi(x) \tendsto{x}{\infty} 1.
26+
\varphi(x) \tendsto{x}{\infty} 1.
2627
\end{align}
2728
%
2829
$\varphi$ is therefore a $\tau_1$-homeomorphsim of $\R$ onto $]\minus 1, 1[$. %

chapter_1/1_14.tex

+1-1
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@
2323
Let us equipp $\D_K$ with the inner product %
2424
%
2525
$\bra{f}\ket{g} = \int_0^1 f \, \bar{g}$, so that %
26-
$\bra{f}\ket{f} = \| f \|_2$. %
26+
$\bra{f}\ket{f} = \| f \|_2^2$. %
2727
%
2828
The following %
2929
%

chapter_1/1_7.tex

+2-2
Original file line numberDiff line numberDiff line change
@@ -151,7 +151,7 @@
151151
%
152152
$\gamma_n \longrightarrow \infty$: %
153153
%
154-
Given any counting number $p$, $\gamma_n$ is greater than $p$ %
154+
Given $p=1, 2, 3, \dots$, $\gamma_n$ is greater than $p$ %
155155
for all but finitely many $n$. %
156156
%
157157
Next, we choose $n_p$ among those \textit{almost all} $n$ that are
@@ -162,7 +162,7 @@
162162
n_p - n_{p-1} > p \longrightarrow \infty,
163163
\end{align}
164164
%
165-
as $n_0=0$. This way, the distribution of %
165+
provided $n_0=0$. This way, the distribution of %
166166
%
167167
$n_1, n_2, \dots$, %
168168
%

notations.tex

+91-32
Original file line numberDiff line numberDiff line change
@@ -1,38 +1,97 @@
1-
\renewcommand{\labelenumi}{\arabic{enumi}.}
2-
\chapter{Notations and Conventions}
3-
\section*{Logic}
1+
\renewcommand{\thesection}{\Roman{section}}
2+
\renewcommand{\thesubsection}{\roman{subsection}}
3+
%
4+
\chapter{Notations and Conventions}%
5+
%\addcontentsline{toc}{chapter}{Notations and Conventions}
6+
\section{Logic}%
7+
\subsection{Propositional logic}
8+
Given propositional variables $\mathit{p}$, $\mathit{q}$, the boolean %
9+
operators $\lnot$, $\lor$, $\land$, $\Leftrightarrow$, $\Rightarrow$, %
10+
$\Leftarrow$, assign boolean \textit{truth values} as follows,
411
\begin{enumerate}
5-
\item{{\bf Halmos' iff.} \iif is a short for ``if and only if".}
6-
\item{{\bf Definitions (of values) with $\Def$.} Given variables %
7-
$\varit{a}$ and $\varit{b}$, %
8-
$a\Def b$ means that $\varit{a}$ is defined as equal to $\varit{b}$.}
9-
\item{{\bf $\equiv$.} $a\equiv b$ means that there exists a ``natural'' %
10-
bijection $\to$ that maps $a$ to $b$; which let us identify $a$ with $b$. %
11-
In a metric space context, $a\equiv b$ means that $\to$ is isometric.}
12-
\item{{\bf Definitions (formul\ae).} Definitions use the \iif format. %
13-
In other words, every definition has a ``only if''. %
14-
}
15-
\item{{\bf Iverson notation.} Given a boolean expression $\varphi$, %
12+
\item[$\lnot$]{%
13+
$\lnot p$ has not the truth value of $p$.
14+
}
15+
\item[$\lor$]{
16+
The \textit{conjonction} $p \lor q$ is true, unless: %
17+
$p$ false, $q$ false.
18+
}
19+
\item[$\land$]{
20+
The \textit{disjunction} is false, unless: $p$ true, $q$ true.
21+
}
22+
\item[$\Leftrightarrow$]{%
23+
The \textit{logical equivalence} expresses \textit{tautologies}: %
24+
$p \Leftrightarrow q$ is true, unless: %
25+
$p$ has not the truth value of $q$. %
26+
It is easily checked that %
27+
%
28+
$(p \Leftrightarrow q) \Leftrightarrow %
29+
\left(
30+
(p \Rightarrow q) \land
31+
(p \Leftarrow q)
32+
\right)$; see the below definitions.
33+
34+
}
35+
\item[$\Rightarrow$]{%
36+
The logical implication is denoted by $\Rightarrow$: %
37+
$p \Rightarrow q$ means %
38+
\textit{if (criterion/premise) $p$ then (conclusion) $q$}, or, %
39+
alternatively, \textit{$p$ implies $q$}. %%
40+
%
41+
$p \Rightarrow q $ is formally defined as $\lnot p \lor q$. %
42+
%
43+
Remark that the ``reasoning'' $p \Rightarrow q $ is always valid, unless: %
44+
$p$ true, $q$ false. Moreover, %
45+
%
46+
$p \land (p \Rightarrow q) \Rightarrow q$ %
47+
%
48+
is always true.
49+
}
50+
\item[$\Leftarrow$]{ $q \Leftarrow p$ is $ p\Rightarrow q $ read backward.
51+
A common pronunciation is \textit{$q$ since $p$}.
52+
}
53+
\end{enumerate}
54+
%
55+
For a subtle introduction to proposition logic, %
56+
see Section 1.3 and Subsection 16.1.3 of \cite{SpecifyingSystems}.
57+
%
58+
\subsection{Iverson notation}%
59+
Given a boolean expression $\varphi$, %
1660
$\boolean{\varphi}$ returns the truth value of $\varphi$, encoded as follows, %
1761
%
18-
\begin{align} \nonumber
19-
\boolean{\varphi}\Def
20-
\begin{cases}
21-
0 & \quad\quad \text{if } \varphi \text{ is false;} \\
22-
1 & \quad\quad \text{if } \varphi \text{ is true.}
23-
\end{cases}
24-
\end{align}
25-
62+
\begin{align} \nonumber
63+
\boolean{\varphi}\triangleq
64+
\begin{cases}
65+
0 & \quad\quad \text{if } \varphi \text{ is false;} \\
66+
1 & \quad\quad \text{if } \varphi \text{ is true.}
67+
\end{cases}
68+
\end{align}
69+
%
2670
For example, $\boolean{1 > 0} = 1$ but $\boolean{ \sqrt{2} \in \Q} = 0$.
27-
}
28-
\end{enumerate}
29-
%\section{Vector spaces}
30-
%\begin{enumerate}
31-
% \item{If $X$ is a vector space of base $B$ and $e$ is an element of B, }
32-
%\end{enumerate}
33-
\section*{Topological vector spaces}
34-
\subsection*{Product space}
35-
\subsection*{Scalar field}%
71+
\section{Special terms}
72+
\subsection{Halmos' iff and definitions}%
73+
\iif is a short for ``if and only if". %
74+
Splitting \iif into \textit{if-then} clauses shows that it is just %
75+
a rewording of the logical equivalence $\Leftrightarrow$. %
76+
All definitions will use the \iif format; %
77+
which is consistent with the fact that every definition expresses a tautology.
78+
%
79+
\subsection{Assigning values}%
80+
Given variables $\varit{a}$ and $\varit{b}$, $\triangleq$ is a specialization %
81+
of $=$. We say that $x\triangleq y$ \iif $x$ and $y$ are assumed to be equal.
82+
Usually, $x\triangleq y$ means that $x$ is assigned the previously known
83+
value $y$ (some authors write $x:=y$) but this is not a limitation.
84+
Definitions can be redundant and may overlap. The only restriction is that %
85+
$x\triangleq y$ is inconsistent whether $x\neq y$.
86+
87+
\subsection{Equinumerosity}%
88+
$a\equiv b$ means that there exists a bijection $\to$ that maps $a$ to $b$; %
89+
which let us identify $a$ with $b$. %
90+
In a metric space context, $a\equiv b$ means that $\to$ is isometric.
91+
\section{Topological vector spaces}
92+
%\subsection{Vector spaces}
93+
\subsection{Product space}
94+
\subsection{Scalar field}%
3695
The usual (complete) scalar field is $\C$. %
3796
A property, \eg linearity, that is true on $\C$ is also true on $\R$. %
3897
The complex case is then a {\it special case} of the real one. %
@@ -59,7 +118,7 @@ \subsection*{Scalar field}%
59118
}. %
60119
\end{quote}
61120
%
62-
\subsection*{Finite dimensional spaces}\label{finite dimensional spaces}%
121+
\subsection{Finite dimensional spaces}\label{finite dimensional spaces}%
63122
It may be customary to identify any $n$-dimensional vector space $Y$ with %
64123
the normed space $(\C^n, \| \,\|_{\C^n})$, %
65124
as $\| \, \|_{\C^n}$ is an arbitray norm on $\C^n$. %

0 commit comments

Comments
 (0)