1
- \renewcommand {\labelenumi }{\arabic {enumi}.}
2
- \chapter {Notations and Conventions }
3
- \section* {Logic }
1
+ \renewcommand {\thesection }{\Roman {section}}
2
+ \renewcommand {\thesubsection }{\roman {subsection}}
3
+ %
4
+ \chapter {Notations and Conventions }%
5
+ % \addcontentsline{toc}{chapter}{Notations and Conventions}
6
+ \section {Logic }%
7
+ \subsection {Propositional logic }
8
+ Given propositional variables $ \mathit {p}$ , $ \mathit {q}$ , the boolean %
9
+ operators $ \lnot $ , $ \lor $ , $ \land $ , $ \Leftrightarrow $ , $ \Rightarrow $ , %
10
+ $ \Leftarrow $ , assign boolean \textit {truth values } as follows,
4
11
\begin {enumerate }
5
- \item {{\bf Halmos' iff.} \iif is a short for `` if and only if" .}
6
- \item {{\bf Definitions (of values) with $ \Def $ .} Given variables %
7
- $ \varit {a}$ and $ \varit {b}$ , %
8
- $ a\Def b$ means that $ \varit {a}$ is defined as equal to $ \varit {b}$ .}
9
- \item {{\bf $ \equiv $ .} $ a\equiv b$ means that there exists a `` natural'' %
10
- bijection $ \to $ that maps $ a$ to $ b$ ; which let us identify $ a$ with $ b$ . %
11
- In a metric space context, $ a\equiv b$ means that $ \to $ is isometric.}
12
- \item {{\bf Definitions (formul\ae ).} Definitions use the \iif format. %
13
- In other words, every definition has a `` only if'' . %
14
- }
15
- \item {{\bf Iverson notation.} Given a boolean expression $ \varphi $ , %
12
+ \item [$ \lnot $ ]{%
13
+ $ \lnot p$ has not the truth value of $ p$ .
14
+ }
15
+ \item [$ \lor $ ]{
16
+ The \textit {conjonction } $ p \lor q$ is true, unless: %
17
+ $ p$ false, $ q$ false.
18
+ }
19
+ \item [$ \land $ ]{
20
+ The \textit {disjunction } is false, unless: $ p$ true, $ q$ true.
21
+ }
22
+ \item [$ \Leftrightarrow $ ]{%
23
+ The \textit {logical equivalence } expresses \textit {tautologies }: %
24
+ $ p \Leftrightarrow q$ is true, unless: %
25
+ $ p$ has not the truth value of $ q$ . %
26
+ It is easily checked that %
27
+ %
28
+ $ (p \Leftrightarrow q) \Leftrightarrow %
29
+ \left (
30
+ (p \Rightarrow q) \land
31
+ (p \Leftarrow q)
32
+ \right )$ ; see the below definitions.
33
+
34
+ }
35
+ \item [$ \Rightarrow $ ]{%
36
+ The logical implication is denoted by $ \Rightarrow $ : %
37
+ $ p \Rightarrow q$ means %
38
+ \textit {if (criterion/premise) $ p$ then (conclusion) $ q$ }, or, %
39
+ alternatively, \textit {$ p$ implies $ q$ }. % %
40
+ %
41
+ $ p \Rightarrow q $ is formally defined as $ \lnot p \lor q$ . %
42
+ %
43
+ Remark that the `` reasoning'' $ p \Rightarrow q $ is always valid, unless: %
44
+ $ p$ true, $ q$ false. Moreover, %
45
+ %
46
+ $ p \land (p \Rightarrow q) \Rightarrow q$ %
47
+ %
48
+ is always true.
49
+ }
50
+ \item [$ \Leftarrow $ ]{ $ q \Leftarrow p$ is $ p\Rightarrow q $ read backward.
51
+ A common pronunciation is \textit {$ q$ since $ p$ }.
52
+ }
53
+ \end {enumerate }
54
+ %
55
+ For a subtle introduction to proposition logic, %
56
+ see Section 1.3 and Subsection 16.1.3 of \cite {SpecifyingSystems }.
57
+ %
58
+ \subsection {Iverson notation }%
59
+ Given a boolean expression $ \varphi $ , %
16
60
$ \boolean {\varphi }$ returns the truth value of $ \varphi $ , encoded as follows, %
17
61
%
18
- \begin {align } \nonumber
19
- \boolean {\varphi }\Def
20
- \begin {cases }
21
- 0 & \quad\quad \text {if } \varphi \text { is false;} \\
22
- 1 & \quad\quad \text {if } \varphi \text { is true.}
23
- \end {cases }
24
- \end {align }
25
-
62
+ \begin {align } \nonumber
63
+ \boolean {\varphi }\triangleq
64
+ \begin {cases }
65
+ 0 & \quad\quad \text {if } \varphi \text { is false;} \\
66
+ 1 & \quad\quad \text {if } \varphi \text { is true.}
67
+ \end {cases }
68
+ \end {align }
69
+ %
26
70
For example, $ \boolean {1 > 0} = 1 $ but $ \boolean { \sqrt {2} \in \Q } = 0 $ .
27
- }
28
- \end {enumerate }
29
- % \section{Vector spaces}
30
- % \begin{enumerate}
31
- % \item{If $X$ is a vector space of base $B$ and $e$ is an element of B, }
32
- % \end{enumerate}
33
- \section* {Topological vector spaces }
34
- \subsection* {Product space }
35
- \subsection* {Scalar field }%
71
+ \section {Special terms }
72
+ \subsection {Halmos' iff and definitions }%
73
+ \iif is a short for `` if and only if" . %
74
+ Splitting \iif into \textit {if-then } clauses shows that it is just %
75
+ a rewording of the logical equivalence $ \Leftrightarrow $ . %
76
+ All definitions will use the \iif format; %
77
+ which is consistent with the fact that every definition expresses a tautology.
78
+ %
79
+ \subsection {Assigning values }%
80
+ Given variables $ \varit {a}$ and $ \varit {b}$ , $ \triangleq $ is a specialization %
81
+ of $ =$ . We say that $ x\triangleq y$ \iif $ x$ and $ y$ are assumed to be equal.
82
+ Usually, $ x\triangleq y$ means that $ x$ is assigned the previously known
83
+ value $ y$ (some authors write $ x:=y$ ) but this is not a limitation.
84
+ Definitions can be redundant and may overlap. The only restriction is that %
85
+ $ x\triangleq y$ is inconsistent whether $ x\neq y$ .
86
+
87
+ \subsection {Equinumerosity }%
88
+ $ a\equiv b$ means that there exists a bijection $ \to $ that maps $ a$ to $ b$ ; %
89
+ which let us identify $ a$ with $ b$ . %
90
+ In a metric space context, $ a\equiv b$ means that $ \to $ is isometric.
91
+ \section {Topological vector spaces }
92
+ % \subsection{Vector spaces}
93
+ \subsection {Product space }
94
+ \subsection {Scalar field }%
36
95
The usual (complete) scalar field is $ \C $ . %
37
96
A property, \eg linearity, that is true on $ \C $ is also true on $ \R $ . %
38
97
The complex case is then a {\it special case} of the real one. %
@@ -59,7 +118,7 @@ \subsection*{Scalar field}%
59
118
}. %
60
119
\end {quote }
61
120
%
62
- \subsection* {Finite dimensional spaces }\label {finite dimensional spaces }%
121
+ \subsection {Finite dimensional spaces }\label {finite dimensional spaces }%
63
122
It may be customary to identify any $ n$ -dimensional vector space $ Y$ with %
64
123
the normed space $ (\C ^n, \| \, \| _{\C ^n})$ , %
65
124
as $ \| \, \| _{\C ^n}$ is an arbitray norm on $ \C ^n$ . %
0 commit comments