forked from huawei-noah/AdderNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
130 lines (101 loc) · 4.32 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# 2020.01.10-Changed for testing AdderNets
# Huawei Technologies Co., Ltd. <[email protected]>
import argparse
import os
import torch
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
import torchvision.datasets as datasets
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--dataset', type=str, default='ImageNet', choices=['cifar10','ImageNet'])
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--data_dir', type=str,
help='path to dataset',default="/cache/imagenet/val/")
parser.add_argument('--model_dir', type=str,
help='path to dataset',default="models/ResNet50-AdderNet.pth")
best_acc1 = 0
args, unparsed = parser.parse_known_args()
def main():
# create model
if args.dataset == 'cifar10':
import resnet20
model = resnet20.resnet20()
elif args.dataset == 'ImageNet':
import resnet50
model = resnet50.resnet50()
model = torch.nn.DataParallel(model).cuda()
model.load_state_dict(torch.load(args.model_dir))
cudnn.benchmark = True
# Data loading code
if args.dataset == 'cifar10':
val_loader = torch.utils.data.DataLoader(
datasets.CIFAR10(args.data_dir, train=False, transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
elif args.dataset == 'ImageNet':
val_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(args.data_dir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
acc1 = validate(val_loader, model)
def validate(val_loader, model):
top1 = AverageMeter()
top5 = AverageMeter()
model.eval()
with torch.no_grad():
for i, (input, target) in enumerate(val_loader):
input = input.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# compute output
output = model(input)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
top1.update(acc1[0], input.size(0))
top5.update(acc5[0], input.size(0))
print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return top1.avg
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()