forked from michaelgrosner/sl-quant
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ex1-self_learning_quant.py
226 lines (184 loc) · 7.43 KB
/
ex1-self_learning_quant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
from __future__ import print_function
import numpy as np
np.random.seed(1335) # for reproducibility
np.set_printoptions(precision=5, suppress=True, linewidth=150)
import pandas as pd
import backtest as twp
from matplotlib import pyplot as plt
from sklearn import metrics, preprocessing
'''
Name: The Self Learning Quant, Example 1
Author: Daniel Zakrisson
Created: 30/03/2016
Copyright: (c) Daniel Zakrisson 2016
Licence: BSD
Requirements:
Numpy
Pandas
MatplotLib
scikit-learn
Keras, https://keras.io/
backtest.py from the TWP library. Download backtest.py and put in the same folder
/plt create a subfolder in the same directory where plot files will be saved
'''
#Load data
def load_data():
price = np.arange(200/10.0) #linearly increasing prices
return price
#Initialize first state, all items are placed deterministically
def init_state(data):
close = data
diff = np.diff(data)
diff = np.insert(diff, 0, 0)
#--- Preprocess data
xdata = np.column_stack((close, diff))
xdata = np.nan_to_num(xdata)
scaler = preprocessing.StandardScaler()
xdata = scaler.fit_transform(xdata)
state = xdata[0:1, :]
return state, xdata
#Take Action
def take_action(state, xdata, action, signal, time_step):
#this should generate a list of trade signals that at evaluation time are fed to the backtester
#the backtester should get a list of trade signals and a list of price data for the assett
#make necessary adjustments to state and then return it
time_step += 1
#if the current iteration is the last state ("terminal state") then set terminal_state to 1
if time_step == xdata.shape[0]:
state = xdata[time_step-1:time_step, :]
terminal_state = 1
signal.loc[time_step] = 0
return state, time_step, signal, terminal_state
#move the market data window one step forward
state = xdata[time_step-1:time_step, :]
#take action
if action != 0:
if action == 1:
signal.loc[time_step] = 100
elif action == 2:
signal.loc[time_step] = -100
elif action == 3:
signal.loc[time_step] = 0
terminal_state = 0
return state, time_step, signal, terminal_state
#Get Reward, the reward is returned at the end of an episode
def get_reward(new_state, time_step, action, xdata, signal, terminal_state, epoch=0):
reward = 0
signal.fillna(value=0, inplace=True)
if terminal_state == 0:
#get reward for the most current action
if signal[time_step] != signal[time_step-1] and terminal_state == 0:
i=1
while signal[time_step-i] == signal[time_step-1-i] and time_step - 1 - i > 0:
i += 1
reward = (xdata[time_step-1, 0] - xdata[time_step - i-1, 0]) * signal[time_step - 1]*-100 + i*np.abs(signal[time_step - 1])/10.0
if signal[time_step] == 0 and signal[time_step - 1] == 0:
reward -= 10
#calculate the reward for all actions if the last iteration in set
if terminal_state == 1:
#run backtest, send list of trade signals and asset data to backtest function
bt = twp.Backtest(pd.Series(data=[x[0] for x in xdata]), signal, signalType='shares')
reward = bt.pnl.iloc[-1]
return reward
def evaluate_Q(eval_data, eval_model):
#This function is used to evaluate the perofrmance of the system each epoch, without the influence of epsilon and random actions
signal = pd.Series(index=np.arange(len(eval_data)))
state, xdata = init_state(eval_data)
status = 1
terminal_state = 0
time_step = 1
while(status == 1):
#We start in state S
#Run the Q function on S to get predicted reward values on all the possible actions
qval = eval_model.predict(state.reshape(1,2), batch_size=1)
action = (np.argmax(qval))
#Take action, observe new state S'
new_state, time_step, signal, terminal_state = take_action(state, xdata, action, signal, time_step)
#Observe reward
eval_reward = get_reward(new_state, time_step, action, xdata, signal, terminal_state, i)
state = new_state
if terminal_state == 1: #terminal state
status = 0
return eval_reward
#This neural network is the the Q-function, run it like this:
#model.predict(state.reshape(1,64), batch_size=1)
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import RMSprop
model = Sequential()
model.add(Dense(4, init='lecun_uniform', input_shape=(2,)))
model.add(Activation('relu'))
#model.add(Dropout(0.2)) I'm not using dropout in this example
model.add(Dense(4, init='lecun_uniform'))
model.add(Activation('relu'))
#model.add(Dropout(0.2))
model.add(Dense(4, init='lecun_uniform'))
model.add(Activation('linear')) #linear output so we can have range of real-valued outputs
rms = RMSprop()
model.compile(loss='mse', optimizer=rms)
import random, timeit
start_time = timeit.default_timer()
indata = load_data()
epochs = 10
gamma = 0.9 #a high gamma makes a long term reward more valuable
epsilon = 1
learning_progress = []
#stores tuples of (S, A, R, S')
h = 0
signal = pd.Series(index=np.arange(len(indata)))
for i in range(epochs):
state, xdata = init_state(indata)
status = 1
terminal_state = 0
time_step = 1
#while learning is still in progress
while(status == 1):
#We start in state S
#Run the Q function on S to get predicted reward values on all the possible actions
qval = model.predict(state.reshape(1,2), batch_size=1)
if (random.random() < epsilon) and i != epochs - 1: #maybe choose random action if not the last epoch
action = np.random.randint(0,4) #assumes 4 different actions
else: #choose best action from Q(s,a) values
action = (np.argmax(qval))
#Take action, observe new state S'
new_state, time_step, signal, terminal_state = take_action(state, xdata, action, signal, time_step)
#Observe reward
reward = get_reward(new_state, time_step, action, xdata, signal, terminal_state, i)
#Get max_Q(S',a)
newQ = model.predict(new_state.reshape(1,2), batch_size=1)
maxQ = np.max(newQ)
y = np.zeros((1,4))
y[:] = qval[:]
if terminal_state == 0: #non-terminal state
update = (reward + (gamma * maxQ))
else: #terminal state (means that it is the last state)
update = reward
y[0][action] = update #target output
model.fit(state.reshape(1,2), y, batch_size=1, nb_epoch=1, verbose=0)
state = new_state
if terminal_state == 1: #terminal state
status = 0
eval_reward = evaluate_Q(indata, model)
print("Epoch #: %s Reward: %f Epsilon: %f" % (i,eval_reward, epsilon))
learning_progress.append((eval_reward))
if epsilon > 0.1:
epsilon -= (1.0/epochs)
elapsed = np.round(timeit.default_timer() - start_time, decimals=2)
print("Completed in %f" % (elapsed,))
#plot results
bt = twp.Backtest(pd.Series(data=[x[0] for x in xdata]), signal, signalType='shares')
bt.data['delta'] = bt.data['shares'].diff().fillna(0)
print(bt.data)
plt.figure()
bt.plotTrades()
plt.suptitle('epoch' + str(i))
plt.savefig('plt/final_trades'+'.png', bbox_inches='tight', pad_inches=1, dpi=72) #assumes there is a ./plt dir
plt.close('all')
plt.figure()
plt.subplot(3,1,1)
bt.plotTrades()
plt.subplot(3,1,2)
bt.pnl.plot(style='x-')
plt.subplot(3,1,3)
plt.plot(learning_progress)
plt.show()