forked from sanshar/Block
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscreen.C
400 lines (362 loc) · 15.5 KB
/
screen.C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
/*
Developed by Sandeep Sharma and Garnet K.-L. Chan, 2012
Copyright (c) 2012, Garnet K.-L. Chan
This program is integrated in Molpro with the permission of
Sandeep Sharma and Garnet K.-L. Chan
*/
#include <IntegralMatrix.h>
#include "pario.h"
#include "screen.h"
#include "global.h"
using namespace std;
namespace SpinAdapted{
vector<int, std::allocator<int> > screened_d_indices(const vector<int, std::allocator<int> >& indices,
const vector<int, std::allocator<int> >& interactingix,
const OneElectronArray& onee, const TwoElectronArray& twoe, double thresh) {
dmrginp.dscreen->start();
vector<int, std::allocator<int> > screened_indices;
for (int i = 0; i < indices.size(); ++i)
if (dmrginp.use_partial_two_integrals() || screen_d_interaction(indices[i], interactingix, onee, twoe, thresh))
screened_indices.push_back(indices[i]);
//pout << "\t\t\tnumber of significant d and d_comp indices: " << screened_indices.size() << endl;
dmrginp.dscreen->stop();
return screened_indices;
}
bool screen_d_interaction(int index, const vector<int, std::allocator<int> >& interactingix,
const OneElectronArray& onee, const TwoElectronArray& twoe, double thresh) {
if(dmrginp.spinAdapted()) {
int lxx = dmrginp.spatial_to_spin(index);
for (int i = 0; i < interactingix.size(); ++i) {
const int ix = interactingix[i];
int ixx = dmrginp.spatial_to_spin(ix);
if (fabs(onee(lxx, ixx)) >= thresh)
return true;
}
for (int i = 0; i < interactingix.size(); ++i) {
int ixx = dmrginp.spatial_to_spin(interactingix[i]);
for (int j = 0; j < interactingix.size(); ++j) {
int jxx = dmrginp.spatial_to_spin(interactingix[j]);
for (int k = i; k < interactingix.size(); ++k)
{
int kxx = dmrginp.spatial_to_spin(interactingix[k]);
if (fabs(twoe(lxx,ixx,jxx,kxx)) >= thresh || fabs(twoe(lxx,kxx,jxx,ixx)) >= thresh )
return true;
}
}
}
if(interactingix.size() == 0)
return true;
else
return false;
} else {
for (int i = 0; i < interactingix.size(); ++i){
const int ix = interactingix[i];
int xl = index;
if (fabs(onee(xl, ix)) >= thresh)
return true;
}
for (int i = 0; i < interactingix.size(); ++i)
for (int j = 0; j < interactingix.size(); ++j)
for (int k = 0; k < interactingix.size(); ++k)
{
const int ix = interactingix[i];
const int jx = interactingix[j];
const int kx = interactingix[k];
int xl = index;
if (fabs(twoe(xl,ix,jx,kx)) >= thresh)
return true;
}
return (interactingix.size() == 0);
}
}
vector<int, std::allocator<int> > screened_cddcomp_indices(const vector<int, std::allocator<int> >& otherindices,
const vector<int, std::allocator<int> >& selfindices,
const OneElectronArray& onee,
const TwoElectronArray& twoe, double thresh)
{
dmrginp.dscreen->start();
vector<int, std::allocator<int> > screened_indices;
for (int i = 0; i < otherindices.size(); ++i)
if (dmrginp.use_partial_two_integrals() || screen_cddcomp_interaction(otherindices[i], selfindices, onee, twoe, thresh))
screened_indices.push_back(otherindices[i]);
//pout << "\t\t\tnumber of significant cdd and cdd_comp indices: " << screened_indices.size() << endl;
dmrginp.dscreen->stop();
return screened_indices;
}
bool screen_cddcomp_interaction(int otherindex, const vector<int, std::allocator<int> >& selfindices,
const OneElectronArray& onee,
const TwoElectronArray& twoe, double thresh)
{
if(!dmrginp.spinAdapted()) {
for (int i = 0; i < selfindices.size(); ++i)
{
const int ix = selfindices[i];
int lx = otherindex;
if (fabs(onee(lx, ix)) >= thresh)
return true;
}
for (int i = 0; i < selfindices.size(); ++i)
for (int j = 0; j < selfindices.size(); ++j)
for (int k = 0; k < selfindices.size(); ++k)
{
const int ix = selfindices[i];
const int jx = selfindices[j];
const int kx = selfindices[k];
int lx = otherindex;
if (fabs(twoe(lx,ix,jx,kx)) >= thresh)
return true;
}
return (selfindices.size() == 0);
}
else {
int lxx = dmrginp.spatial_to_spin(otherindex);
for (int i = 0; i < selfindices.size(); ++i)
{
const int ix = selfindices[i];
int ixx = dmrginp.spatial_to_spin(ix);
if (fabs(onee(lxx, ixx)) >= thresh)
return true;
}
for (int i = 0; i < selfindices.size(); ++i) {
int ixx = dmrginp.spatial_to_spin(selfindices[i]);
for (int j = 0; j < selfindices.size(); ++j) {
int jxx = dmrginp.spatial_to_spin(selfindices[j]);
for (int k = i; k < selfindices.size(); ++k)
{
int kxx = dmrginp.spatial_to_spin(selfindices[k]);
if (fabs(twoe(lxx,ixx,jxx,kxx)) >= thresh || fabs(twoe(jxx,ixx,lxx,kxx)) >= thresh)
return true;
}
}
}
return (selfindices.size() == 0);
}
}
/**
* from a list of (sorted) indices in a given block
* returns the screened pair indices for the operators
* cd and cdcomp that
* interact
* with the other block indices (interactingix)
*/
vector<pair<int, int> > screened_cd_indices(const vector<int, std::allocator<int> >& indices,
const vector<int, std::allocator<int> >& interactingix,
const TwoElectronArray& twoe, double thresh)
{
dmrginp.cdscreen->start();
vector<pair<int, int> > screened_indices;
for (int i = 0; i < indices.size(); ++i)
for (int j = 0; j <= i; ++j)
if (dmrginp.use_partial_two_integrals() || screen_cd_interaction(indices[i], indices[j], interactingix, twoe, thresh))
screened_indices.push_back(make_pair(indices[i], indices[j]));
dmrginp.cdscreen->stop();
return screened_indices;
}
/**
* from a list of (sorted) indices in a given block
* returns the screened pair indices for the operators
* dd and ddcomp that
* interact
* with the other block indices (interactingix)
*/
vector<pair<int, int> > screened_dd_indices(const vector<int, std::allocator<int> >& indices,
const vector<int, std::allocator<int> >& interactingix,
const TwoElectronArray& twoe, double thresh)
{
dmrginp.ddscreen->start();
vector<pair<int, int> > screened_indices;
for (int i = 0; i < indices.size(); ++i)
for (int j = 0; j <= i; ++j)
if (dmrginp.use_partial_two_integrals() || screen_dd_interaction(indices[i], indices[j], interactingix, twoe, thresh))
screened_indices.push_back(make_pair(indices[i], indices[j]));
dmrginp.ddscreen->stop();
return screened_indices;
}
/**
* given two indices i and j, determine
* whether we should build c+i dj
* or the complementary operator for c+i dj
* by looking at the integrals of the complementary
* operator
* interactingix are the indices that we are summing over
* (i.e. the indices in the block that we are interacting with)
*/
bool screen_cd_interaction(int ci, int dj, const vector<int, std::allocator<int> >& interactingix,
const TwoElectronArray& twoe, double thresh)
{
if (dmrginp.spinAdapted()) {
int ninter = interactingix.size();
double twoeterm = 0.;
int cix = dmrginp.spatial_to_spin(ci);
int djx = dmrginp.spatial_to_spin(dj);
for (int k = 0; k < ninter; ++k) {
int kxx = dmrginp.spatial_to_spin(interactingix[k]);
for (int l = 0; l < ninter; ++l)
{
int lxx = dmrginp.spatial_to_spin(interactingix[l]);
//if (fabs(twoe(cix, kxx, lxx, djx))>=thresh || fabs(twoe(kxx, cix, lxx, djx)) >= thresh)
if (fabs(twoe(kxx, cix, djx, lxx))>=thresh || fabs(twoe(cix, kxx, djx, lxx)) >= thresh)
return true; // there is a significant integral joining the two regions
}
}
return (ninter == 0);
}
else {
int ninter = interactingix.size();
for (int k = 0; k < ninter; ++k)
for (int l = 0; l < ninter; ++l)
{
int kx = interactingix[k];
int lx = interactingix[l];
if (fabs(twoe(ci, kx, lx, dj))>=thresh || fabs(twoe(kx, ci, lx, dj)) >= thresh)
return true; // there is a significant integral joining the two regions
}
return (ninter == 0);
}
}
bool screen_dd_interaction(int ci, int cj, const vector<int, std::allocator<int> >& interactingix,
const TwoElectronArray& twoe, double thresh)
{
if(dmrginp.spinAdapted()) {
int ninter = interactingix.size();
int cix = dmrginp.spatial_to_spin(ci);
int cjx = dmrginp.spatial_to_spin(cj);
for (int k = 0; k < ninter; ++k) {
int kxx = dmrginp.spatial_to_spin(interactingix[k]);
for (int l = 0; l < ninter; ++l)
{
int lxx = dmrginp.spatial_to_spin(interactingix[l]);
if (fabs(twoe(cix, cjx, kxx, lxx))>=thresh)
return true; // there is a significant integral joining the two regions
}
}
return (ninter == 0);
}
else {
if(ci==cj) return false;
int ninter = interactingix.size();
for (int k = 0; k < ninter; ++k)
for (int l = 0; l < ninter; ++l)
{
int kx = interactingix[k];
int lx = interactingix[l];
if (fabs(twoe(ci, cj, kx, lx))>=thresh)
return true; // there is a significant integral joining the two regions
}
return (ninter == 0);
}
}
// these are for BCS type calculations
std::vector<int, std::allocator<int> > screened_d_indices(const std::vector<int, std::allocator<int> >& indices, const std::vector<int, std::allocator<int> >& interactingix, const OneElectronArray& onee, const TwoElectronArray& twoe, const PairArray& vcc, const CCCCArray& vcccc, const CCCDArray& vcccd, double thresh) {
vector<int, std::allocator<int> > screened_indices;
for (int i = 0; i < indices.size(); ++i)
if (dmrginp.use_partial_two_integrals() || screen_d_interaction(indices[i], interactingix, onee, twoe, vcc, vcccc, vcccd, thresh))
screened_indices.push_back(indices[i]);
return screened_indices;
}
bool screen_d_interaction(int index, const std::vector<int, std::allocator<int> >& interactingix, const OneElectronArray& onee, const TwoElectronArray& twoe, const PairArray& vcc, const CCCCArray& vcccc, const CCCDArray& vcccd, double thresh) {
if (dmrginp.spinAdapted()) {
pout << "BCS with spin adaption not implemented!" << endl;
abort();
} else {
for (int i = 0; i < interactingix.size(); ++i) {
const int ix = interactingix[i];
int xl = index;
if (fabs(onee(xl, ix)) >= thresh || fabs(vcc(xl, ix)) >= thresh || fabs(vcc(ix, xl)) >= thresh)
return true;
}
for (int i = 0; i < interactingix.size(); ++i)
for (int j = 0; j < interactingix.size(); ++j)
for (int k = 0; k < interactingix.size(); ++k) {
const int ix = interactingix[i];
const int jx = interactingix[j];
const int kx = interactingix[k];
int xl = index;
if (fabs(twoe(xl, ix, jx, kx)) >= thresh || fabs(vcccd(xl, ix, jx, kx)) >= thresh || fabs(vcccd(ix, jx, kx, xl)) > thresh || fabs(vcccc(xl, ix, jx, kx)) > thresh)
return true;
}
return (interactingix.size() == 0);
}
}
std::vector<std::pair<int, int> > screened_cd_indices(const std::vector<int, std::allocator<int> >& indices, const std::vector<int, std::allocator<int> >& interactingix, const TwoElectronArray& twoe, const PairArray& vcc, const CCCCArray& vcccc, const CCCDArray& vcccd, double thresh) {
vector<pair<int, int> > screened_indices;
for (int i = 0; i < indices.size(); ++i) {
for (int j = 0; j <= i; ++j)
if (dmrginp.use_partial_two_integrals() || screen_cd_interaction(indices[i], indices[j], interactingix, twoe, vcc, vcccc, vcccd, thresh))
screened_indices.push_back(make_pair(indices[i], indices[j]));
}
return screened_indices;
}
bool screen_cd_interaction(int ci, int dj, const std::vector<int, std::allocator<int> >& interactingix, const TwoElectronArray& twoe, const PairArray& vcc, const CCCCArray& vcccc, const CCCDArray& vcccd, double thresh) {
if (dmrginp.spinAdapted()) {
pout << "BCS with spin adaption not implemented!" << endl;
abort();
} else {
int ninter = interactingix.size();
for (int k = 0; k < ninter; ++k)
for (int l = 0; l < ninter; ++l) {
int kx = interactingix[k];
int lx = interactingix[l];
if (fabs(twoe(ci, kx, lx, dj))>= thresh || fabs(twoe(kx, ci, lx, dj)) >= thresh || fabs(v_cccd(ci, kx, lx, dj)) >= thresh || fabs(v_cccd(dj, kx, lx, ci)) >= thresh)
return true;
}
return (ninter == 0);
}
}
std::vector<std::pair<int, int> > screened_dd_indices(const std::vector<int, std::allocator<int> >& indices, const std::vector<int, std::allocator<int> >& interactingix, const TwoElectronArray& twoe, const PairArray& vcc, const CCCCArray& vcccc, const CCCDArray& vcccd, double thresh) {
vector<pair<int, int> > screened_indices;
for (int i = 0; i < indices.size(); ++i)
for (int j = 0; j <= i; ++j)
if (dmrginp.use_partial_two_integrals() || screen_dd_interaction(indices[i], indices[j], interactingix, twoe, vcc, vcccc, vcccd, thresh))
screened_indices.push_back(make_pair(indices[i], indices[j]));
return screened_indices;
}
bool screen_dd_interaction(int ci, int cj, const std::vector<int, std::allocator<int> >& interactingix, const TwoElectronArray& twoe, const PairArray& vcc, const CCCCArray& vcccc, const CCCDArray& vcccd, double thresh) {
if (dmrginp.spinAdapted()) {
pout << "BCS with spin adaption not implemented!" << endl;
abort();
} else {
int ninter = interactingix.size();
for (int k = 0; k < ninter; ++k)
for (int l = 0; l < ninter; ++l) {
int kx = interactingix[k];
int lx = interactingix[l];
if (fabs(twoe(ci, cj, kx, lx))>=thresh || fabs(vcccd(ci, cj, kx, lx)) >= thresh || fabs(vcccc(ci, cj, kx, lx)) >= thresh)
return true;
}
return (ninter == 0);
}
}
std::vector<int, std::allocator<int> > screened_cddcomp_indices(const std::vector<int, std::allocator<int> >& otherindices, const std::vector<int, std::allocator<int> >& selfindices, const OneElectronArray& onee, const TwoElectronArray& twoe, const PairArray& vcc, const CCCCArray& vcccc, const CCCDArray& vcccd, double thresh) {
vector<int, std::allocator<int> > screened_indices;
for (int i = 0; i < otherindices.size(); ++i)
if (dmrginp.use_partial_two_integrals() || screen_cddcomp_interaction(otherindices[i], selfindices, onee, twoe, vcc, vcccc, vcccd, thresh))
screened_indices.push_back(otherindices[i]);
//pout << "\t\t\tnumber of significant cdd and cdd_comp indices: " << screened_indices.size() << endl;
return screened_indices;
}
bool screen_cddcomp_interaction(int otherindex, const std::vector<int, std::allocator<int> >& selfindices, const OneElectronArray& onee, const TwoElectronArray& twoe, const PairArray& vcc, const CCCCArray& vcccc, const CCCDArray& vcccd, double thresh) {
if (dmrginp.spinAdapted()) {
pout << "BCS with spin adaption not implemented!" << endl;
abort();
} else {
for (int i = 0; i < selfindices.size(); ++i) {
const int ix = selfindices[i];
int lx = otherindex;
if (fabs(onee(lx, ix)) >= thresh || fabs(vcc(lx, ix)) >= thresh || fabs(vcc(ix, lx)) >= thresh)
return true;
}
for (int i = 0; i < selfindices.size(); ++i)
for (int j = 0; j < selfindices.size(); ++j)
for (int k = 0; k < selfindices.size(); ++k) {
const int ix = selfindices[i];
const int jx = selfindices[j];
const int kx = selfindices[k];
int lx = otherindex;
if (fabs(twoe(lx, ix, jx, kx)) >= thresh || fabs(vcccd(lx, ix, jx, kx)) >= thresh || fabs(vcccd(ix, jx, kx, lx)) > thresh || fabs(vcccc(lx, ix, jx, kx)) > thresh)
return true;
}
return (selfindices.size() == 0);
}
}
} // namespace SpinAdapted