-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathnumber_of_parents.py
72 lines (55 loc) · 3.05 KB
/
number_of_parents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
"""
There are a few worthwhile things to notice in this example:
1. you can pass hyperparams into functions from the `.breed` and `.mutate` step
2. the algorithm does not care how many parents it will use in the `breed` step
"""
import random
import math
import argparse
from evol import Population, Evolution
def run_evolutionary(opt_value=1, population_size=100, n_parents=2, workers=1,
num_iter=200, survival=0.5, noise=0.1, seed=42, verbose=True):
random.seed(seed)
def init_func():
return (random.random() - 0.5) * 20 + 10
def eval_func(x, opt_value=opt_value):
return -((x - opt_value) ** 2) + math.cos(x - opt_value)
def random_parent_picker(pop, n_parents):
return [random.choice(pop) for i in range(n_parents)]
def mean_parents(*parents):
return sum(parents) / len(parents)
def add_noise(chromosome, sigma):
return chromosome + (random.random() - 0.5) * sigma
pop = Population(chromosomes=[init_func() for _ in range(population_size)],
eval_function=eval_func, maximize=True, concurrent_workers=workers).evaluate()
evo = (Evolution()
.survive(fraction=survival)
.breed(parent_picker=random_parent_picker, combiner=mean_parents, n_parents=n_parents)
.mutate(mutate_function=add_noise, sigma=noise)
.evaluate())
for i in range(num_iter):
pop = pop.evolve(evo)
if verbose:
print(f"iteration:{i} best: {pop.current_best.fitness} worst: {pop.current_worst.fitness}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Run an example evol algorithm against a simple continuous function.')
parser.add_argument('--opt-value', type=int, default=0,
help='the true optimal value of the problem')
parser.add_argument('--population-size', type=int, default=20,
help='the number of candidates to start the algorithm with')
parser.add_argument('--n-parents', type=int, default=2,
help='the number of parents the algorithm with use to generate new indivuals')
parser.add_argument('--num-iter', type=int, default=20,
help='the number of evolutionary cycles to run')
parser.add_argument('--survival', type=float, default=0.7,
help='the fraction of individuals who will survive a generation')
parser.add_argument('--noise', type=float, default=0.5,
help='the amount of noise the mutate step will add to each individual')
parser.add_argument('--seed', type=int, default=42,
help='the random seed for all this')
parser.add_argument('--workers', type=int, default=1,
help='the number of workers to run the command in')
args = parser.parse_args()
run_evolutionary(opt_value=args.opt_value, population_size=args.population_size,
n_parents=args.n_parents, num_iter=args.num_iter,
noise=args.noise, seed=args.seed, workers=args.workers)