-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathsimple_callback.py
88 lines (67 loc) · 2.22 KB
/
simple_callback.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
"""
This example demonstrates how logging works in evolutions.
"""
import random
from evol import Population, Evolution
def random_start():
"""
This function generates a random (x,y) coordinate in the searchspace
"""
return (random.random() - 0.5) * 20, (random.random() - 0.5) * 20
def func_to_optimise(xy):
"""
This is the function we want to optimise (maximize)
"""
x, y = xy
return -(1-x)**2 - 2*(2-x**2)**2
def pick_random_parents(pop):
"""
This is how we are going to select parents from the population
"""
mom = random.choice(pop)
dad = random.choice(pop)
return mom, dad
def make_child(mom, dad):
"""
This is how two parents are going to make a child.
Note that the output of a tuple, just like the output of `random_start`
"""
child_x = (mom[0] + dad[0])/2
child_y = (mom[1] + dad[1])/2
return child_x, child_y
def add_noise(chromosome, sigma):
"""
This is a function that will add some noise to the chromosome.
"""
new_x = chromosome[0] + (random.random()-0.5) * sigma
new_y = chromosome[1] + (random.random()-0.5) * sigma
return new_x, new_y
class MyLogger():
def __init__(self):
self.i = 0
def log(self, pop):
self.i += 1
best = max([i.fitness for i in pop.evaluate()])
print(f"the best score i={self.i} => {best}")
if __name__ == "__main__":
logger = MyLogger()
random.seed(42)
pop = Population(chromosomes=[random_start() for _ in range(200)],
eval_function=func_to_optimise,
maximize=True, concurrent_workers=2)
evo1 = (Evolution()
.survive(fraction=0.1)
.breed(parent_picker=pick_random_parents, combiner=make_child)
.mutate(mutate_function=add_noise, sigma=0.2)
.evaluate()
.callback(logger.log))
evo2 = (Evolution()
.survive(n=10)
.breed(parent_picker=pick_random_parents, combiner=make_child)
.mutate(mutate_function=add_noise, sigma=0.1)
.evaluate()
.callback(logger.log))
evo3 = (Evolution()
.repeat(evo1, n=20)
.repeat(evo2, n=20))
pop = pop.evolve(evo3, n=3)