forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathptrace.c
2221 lines (1954 loc) · 57.5 KB
/
ptrace.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Kernel support for the ptrace() and syscall tracing interfaces.
*
* Copyright (C) 1999-2005 Hewlett-Packard Co
* David Mosberger-Tang <[email protected]>
* Copyright (C) 2006 Intel Co
* 2006-08-12 - IA64 Native Utrace implementation support added by
* Anil S Keshavamurthy <[email protected]>
*
* Derived from the x86 and Alpha versions.
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/errno.h>
#include <linux/ptrace.h>
#include <linux/user.h>
#include <linux/security.h>
#include <linux/audit.h>
#include <linux/signal.h>
#include <linux/regset.h>
#include <linux/elf.h>
#include <linux/tracehook.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/ptrace_offsets.h>
#include <asm/rse.h>
#include <asm/uaccess.h>
#include <asm/unwind.h>
#ifdef CONFIG_PERFMON
#include <asm/perfmon.h>
#endif
#include "entry.h"
/*
* Bits in the PSR that we allow ptrace() to change:
* be, up, ac, mfl, mfh (the user mask; five bits total)
* db (debug breakpoint fault; one bit)
* id (instruction debug fault disable; one bit)
* dd (data debug fault disable; one bit)
* ri (restart instruction; two bits)
* is (instruction set; one bit)
*/
#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
| IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
#define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
#define PFM_MASK MASK(38)
#define PTRACE_DEBUG 0
#if PTRACE_DEBUG
# define dprintk(format...) printk(format)
# define inline
#else
# define dprintk(format...)
#endif
/* Return TRUE if PT was created due to kernel-entry via a system-call. */
static inline int
in_syscall (struct pt_regs *pt)
{
return (long) pt->cr_ifs >= 0;
}
/*
* Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
* bitset where bit i is set iff the NaT bit of register i is set.
*/
unsigned long
ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
{
# define GET_BITS(first, last, unat) \
({ \
unsigned long bit = ia64_unat_pos(&pt->r##first); \
unsigned long nbits = (last - first + 1); \
unsigned long mask = MASK(nbits) << first; \
unsigned long dist; \
if (bit < first) \
dist = 64 + bit - first; \
else \
dist = bit - first; \
ia64_rotr(unat, dist) & mask; \
})
unsigned long val;
/*
* Registers that are stored consecutively in struct pt_regs
* can be handled in parallel. If the register order in
* struct_pt_regs changes, this code MUST be updated.
*/
val = GET_BITS( 1, 1, scratch_unat);
val |= GET_BITS( 2, 3, scratch_unat);
val |= GET_BITS(12, 13, scratch_unat);
val |= GET_BITS(14, 14, scratch_unat);
val |= GET_BITS(15, 15, scratch_unat);
val |= GET_BITS( 8, 11, scratch_unat);
val |= GET_BITS(16, 31, scratch_unat);
return val;
# undef GET_BITS
}
/*
* Set the NaT bits for the scratch registers according to NAT and
* return the resulting unat (assuming the scratch registers are
* stored in PT).
*/
unsigned long
ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
{
# define PUT_BITS(first, last, nat) \
({ \
unsigned long bit = ia64_unat_pos(&pt->r##first); \
unsigned long nbits = (last - first + 1); \
unsigned long mask = MASK(nbits) << first; \
long dist; \
if (bit < first) \
dist = 64 + bit - first; \
else \
dist = bit - first; \
ia64_rotl(nat & mask, dist); \
})
unsigned long scratch_unat;
/*
* Registers that are stored consecutively in struct pt_regs
* can be handled in parallel. If the register order in
* struct_pt_regs changes, this code MUST be updated.
*/
scratch_unat = PUT_BITS( 1, 1, nat);
scratch_unat |= PUT_BITS( 2, 3, nat);
scratch_unat |= PUT_BITS(12, 13, nat);
scratch_unat |= PUT_BITS(14, 14, nat);
scratch_unat |= PUT_BITS(15, 15, nat);
scratch_unat |= PUT_BITS( 8, 11, nat);
scratch_unat |= PUT_BITS(16, 31, nat);
return scratch_unat;
# undef PUT_BITS
}
#define IA64_MLX_TEMPLATE 0x2
#define IA64_MOVL_OPCODE 6
void
ia64_increment_ip (struct pt_regs *regs)
{
unsigned long w0, ri = ia64_psr(regs)->ri + 1;
if (ri > 2) {
ri = 0;
regs->cr_iip += 16;
} else if (ri == 2) {
get_user(w0, (char __user *) regs->cr_iip + 0);
if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
/*
* rfi'ing to slot 2 of an MLX bundle causes
* an illegal operation fault. We don't want
* that to happen...
*/
ri = 0;
regs->cr_iip += 16;
}
}
ia64_psr(regs)->ri = ri;
}
void
ia64_decrement_ip (struct pt_regs *regs)
{
unsigned long w0, ri = ia64_psr(regs)->ri - 1;
if (ia64_psr(regs)->ri == 0) {
regs->cr_iip -= 16;
ri = 2;
get_user(w0, (char __user *) regs->cr_iip + 0);
if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
/*
* rfi'ing to slot 2 of an MLX bundle causes
* an illegal operation fault. We don't want
* that to happen...
*/
ri = 1;
}
}
ia64_psr(regs)->ri = ri;
}
/*
* This routine is used to read an rnat bits that are stored on the
* kernel backing store. Since, in general, the alignment of the user
* and kernel are different, this is not completely trivial. In
* essence, we need to construct the user RNAT based on up to two
* kernel RNAT values and/or the RNAT value saved in the child's
* pt_regs.
*
* user rbs
*
* +--------+ <-- lowest address
* | slot62 |
* +--------+
* | rnat | 0x....1f8
* +--------+
* | slot00 | \
* +--------+ |
* | slot01 | > child_regs->ar_rnat
* +--------+ |
* | slot02 | / kernel rbs
* +--------+ +--------+
* <- child_regs->ar_bspstore | slot61 | <-- krbs
* +- - - - + +--------+
* | slot62 |
* +- - - - + +--------+
* | rnat |
* +- - - - + +--------+
* vrnat | slot00 |
* +- - - - + +--------+
* = =
* +--------+
* | slot00 | \
* +--------+ |
* | slot01 | > child_stack->ar_rnat
* +--------+ |
* | slot02 | /
* +--------+
* <--- child_stack->ar_bspstore
*
* The way to think of this code is as follows: bit 0 in the user rnat
* corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
* value. The kernel rnat value holding this bit is stored in
* variable rnat0. rnat1 is loaded with the kernel rnat value that
* form the upper bits of the user rnat value.
*
* Boundary cases:
*
* o when reading the rnat "below" the first rnat slot on the kernel
* backing store, rnat0/rnat1 are set to 0 and the low order bits are
* merged in from pt->ar_rnat.
*
* o when reading the rnat "above" the last rnat slot on the kernel
* backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
*/
static unsigned long
get_rnat (struct task_struct *task, struct switch_stack *sw,
unsigned long *krbs, unsigned long *urnat_addr,
unsigned long *urbs_end)
{
unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
unsigned long umask = 0, mask, m;
unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
long num_regs, nbits;
struct pt_regs *pt;
pt = task_pt_regs(task);
kbsp = (unsigned long *) sw->ar_bspstore;
ubspstore = (unsigned long *) pt->ar_bspstore;
if (urbs_end < urnat_addr)
nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
else
nbits = 63;
mask = MASK(nbits);
/*
* First, figure out which bit number slot 0 in user-land maps
* to in the kernel rnat. Do this by figuring out how many
* register slots we're beyond the user's backingstore and
* then computing the equivalent address in kernel space.
*/
num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
shift = ia64_rse_slot_num(slot0_kaddr);
rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
rnat0_kaddr = rnat1_kaddr - 64;
if (ubspstore + 63 > urnat_addr) {
/* some bits need to be merged in from pt->ar_rnat */
umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
urnat = (pt->ar_rnat & umask);
mask &= ~umask;
if (!mask)
return urnat;
}
m = mask << shift;
if (rnat0_kaddr >= kbsp)
rnat0 = sw->ar_rnat;
else if (rnat0_kaddr > krbs)
rnat0 = *rnat0_kaddr;
urnat |= (rnat0 & m) >> shift;
m = mask >> (63 - shift);
if (rnat1_kaddr >= kbsp)
rnat1 = sw->ar_rnat;
else if (rnat1_kaddr > krbs)
rnat1 = *rnat1_kaddr;
urnat |= (rnat1 & m) << (63 - shift);
return urnat;
}
/*
* The reverse of get_rnat.
*/
static void
put_rnat (struct task_struct *task, struct switch_stack *sw,
unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
unsigned long *urbs_end)
{
unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
long num_regs, nbits;
struct pt_regs *pt;
unsigned long cfm, *urbs_kargs;
pt = task_pt_regs(task);
kbsp = (unsigned long *) sw->ar_bspstore;
ubspstore = (unsigned long *) pt->ar_bspstore;
urbs_kargs = urbs_end;
if (in_syscall(pt)) {
/*
* If entered via syscall, don't allow user to set rnat bits
* for syscall args.
*/
cfm = pt->cr_ifs;
urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
}
if (urbs_kargs >= urnat_addr)
nbits = 63;
else {
if ((urnat_addr - 63) >= urbs_kargs)
return;
nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
}
mask = MASK(nbits);
/*
* First, figure out which bit number slot 0 in user-land maps
* to in the kernel rnat. Do this by figuring out how many
* register slots we're beyond the user's backingstore and
* then computing the equivalent address in kernel space.
*/
num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
shift = ia64_rse_slot_num(slot0_kaddr);
rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
rnat0_kaddr = rnat1_kaddr - 64;
if (ubspstore + 63 > urnat_addr) {
/* some bits need to be place in pt->ar_rnat: */
umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
mask &= ~umask;
if (!mask)
return;
}
/*
* Note: Section 11.1 of the EAS guarantees that bit 63 of an
* rnat slot is ignored. so we don't have to clear it here.
*/
rnat0 = (urnat << shift);
m = mask << shift;
if (rnat0_kaddr >= kbsp)
sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
else if (rnat0_kaddr > krbs)
*rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
rnat1 = (urnat >> (63 - shift));
m = mask >> (63 - shift);
if (rnat1_kaddr >= kbsp)
sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
else if (rnat1_kaddr > krbs)
*rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
}
static inline int
on_kernel_rbs (unsigned long addr, unsigned long bspstore,
unsigned long urbs_end)
{
unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
urbs_end);
return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
}
/*
* Read a word from the user-level backing store of task CHILD. ADDR
* is the user-level address to read the word from, VAL a pointer to
* the return value, and USER_BSP gives the end of the user-level
* backing store (i.e., it's the address that would be in ar.bsp after
* the user executed a "cover" instruction).
*
* This routine takes care of accessing the kernel register backing
* store for those registers that got spilled there. It also takes
* care of calculating the appropriate RNaT collection words.
*/
long
ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
unsigned long user_rbs_end, unsigned long addr, long *val)
{
unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
struct pt_regs *child_regs;
size_t copied;
long ret;
urbs_end = (long *) user_rbs_end;
laddr = (unsigned long *) addr;
child_regs = task_pt_regs(child);
bspstore = (unsigned long *) child_regs->ar_bspstore;
krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
if (on_kernel_rbs(addr, (unsigned long) bspstore,
(unsigned long) urbs_end))
{
/*
* Attempt to read the RBS in an area that's actually
* on the kernel RBS => read the corresponding bits in
* the kernel RBS.
*/
rnat_addr = ia64_rse_rnat_addr(laddr);
ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
if (laddr == rnat_addr) {
/* return NaT collection word itself */
*val = ret;
return 0;
}
if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
/*
* It is implementation dependent whether the
* data portion of a NaT value gets saved on a
* st8.spill or RSE spill (e.g., see EAS 2.6,
* 4.4.4.6 Register Spill and Fill). To get
* consistent behavior across all possible
* IA-64 implementations, we return zero in
* this case.
*/
*val = 0;
return 0;
}
if (laddr < urbs_end) {
/*
* The desired word is on the kernel RBS and
* is not a NaT.
*/
regnum = ia64_rse_num_regs(bspstore, laddr);
*val = *ia64_rse_skip_regs(krbs, regnum);
return 0;
}
}
copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
if (copied != sizeof(ret))
return -EIO;
*val = ret;
return 0;
}
long
ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
unsigned long user_rbs_end, unsigned long addr, long val)
{
unsigned long *bspstore, *krbs, regnum, *laddr;
unsigned long *urbs_end = (long *) user_rbs_end;
struct pt_regs *child_regs;
laddr = (unsigned long *) addr;
child_regs = task_pt_regs(child);
bspstore = (unsigned long *) child_regs->ar_bspstore;
krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
if (on_kernel_rbs(addr, (unsigned long) bspstore,
(unsigned long) urbs_end))
{
/*
* Attempt to write the RBS in an area that's actually
* on the kernel RBS => write the corresponding bits
* in the kernel RBS.
*/
if (ia64_rse_is_rnat_slot(laddr))
put_rnat(child, child_stack, krbs, laddr, val,
urbs_end);
else {
if (laddr < urbs_end) {
regnum = ia64_rse_num_regs(bspstore, laddr);
*ia64_rse_skip_regs(krbs, regnum) = val;
}
}
} else if (access_process_vm(child, addr, &val, sizeof(val), 1)
!= sizeof(val))
return -EIO;
return 0;
}
/*
* Calculate the address of the end of the user-level register backing
* store. This is the address that would have been stored in ar.bsp
* if the user had executed a "cover" instruction right before
* entering the kernel. If CFMP is not NULL, it is used to return the
* "current frame mask" that was active at the time the kernel was
* entered.
*/
unsigned long
ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
unsigned long *cfmp)
{
unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
long ndirty;
krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
bspstore = (unsigned long *) pt->ar_bspstore;
ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
if (in_syscall(pt))
ndirty += (cfm & 0x7f);
else
cfm &= ~(1UL << 63); /* clear valid bit */
if (cfmp)
*cfmp = cfm;
return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
}
/*
* Synchronize (i.e, write) the RSE backing store living in kernel
* space to the VM of the CHILD task. SW and PT are the pointers to
* the switch_stack and pt_regs structures, respectively.
* USER_RBS_END is the user-level address at which the backing store
* ends.
*/
long
ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
unsigned long user_rbs_start, unsigned long user_rbs_end)
{
unsigned long addr, val;
long ret;
/* now copy word for word from kernel rbs to user rbs: */
for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
if (ret < 0)
return ret;
if (access_process_vm(child, addr, &val, sizeof(val), 1)
!= sizeof(val))
return -EIO;
}
return 0;
}
static long
ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
unsigned long user_rbs_start, unsigned long user_rbs_end)
{
unsigned long addr, val;
long ret;
/* now copy word for word from user rbs to kernel rbs: */
for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
if (access_process_vm(child, addr, &val, sizeof(val), 0)
!= sizeof(val))
return -EIO;
ret = ia64_poke(child, sw, user_rbs_end, addr, val);
if (ret < 0)
return ret;
}
return 0;
}
typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
unsigned long, unsigned long);
static void do_sync_rbs(struct unw_frame_info *info, void *arg)
{
struct pt_regs *pt;
unsigned long urbs_end;
syncfunc_t fn = arg;
if (unw_unwind_to_user(info) < 0)
return;
pt = task_pt_regs(info->task);
urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
}
/*
* when a thread is stopped (ptraced), debugger might change thread's user
* stack (change memory directly), and we must avoid the RSE stored in kernel
* to override user stack (user space's RSE is newer than kernel's in the
* case). To workaround the issue, we copy kernel RSE to user RSE before the
* task is stopped, so user RSE has updated data. we then copy user RSE to
* kernel after the task is resummed from traced stop and kernel will use the
* newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
* synchronize user RSE to kernel.
*/
void ia64_ptrace_stop(void)
{
if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
return;
set_notify_resume(current);
unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
}
/*
* This is called to read back the register backing store.
*/
void ia64_sync_krbs(void)
{
clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
}
/*
* After PTRACE_ATTACH, a thread's register backing store area in user
* space is assumed to contain correct data whenever the thread is
* stopped. arch_ptrace_stop takes care of this on tracing stops.
* But if the child was already stopped for job control when we attach
* to it, then it might not ever get into ptrace_stop by the time we
* want to examine the user memory containing the RBS.
*/
void
ptrace_attach_sync_user_rbs (struct task_struct *child)
{
int stopped = 0;
struct unw_frame_info info;
/*
* If the child is in TASK_STOPPED, we need to change that to
* TASK_TRACED momentarily while we operate on it. This ensures
* that the child won't be woken up and return to user mode while
* we are doing the sync. (It can only be woken up for SIGKILL.)
*/
read_lock(&tasklist_lock);
if (child->sighand) {
spin_lock_irq(&child->sighand->siglock);
if (child->state == TASK_STOPPED &&
!test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
set_notify_resume(child);
child->state = TASK_TRACED;
stopped = 1;
}
spin_unlock_irq(&child->sighand->siglock);
}
read_unlock(&tasklist_lock);
if (!stopped)
return;
unw_init_from_blocked_task(&info, child);
do_sync_rbs(&info, ia64_sync_user_rbs);
/*
* Now move the child back into TASK_STOPPED if it should be in a
* job control stop, so that SIGCONT can be used to wake it up.
*/
read_lock(&tasklist_lock);
if (child->sighand) {
spin_lock_irq(&child->sighand->siglock);
if (child->state == TASK_TRACED &&
(child->signal->flags & SIGNAL_STOP_STOPPED)) {
child->state = TASK_STOPPED;
}
spin_unlock_irq(&child->sighand->siglock);
}
read_unlock(&tasklist_lock);
}
static inline int
thread_matches (struct task_struct *thread, unsigned long addr)
{
unsigned long thread_rbs_end;
struct pt_regs *thread_regs;
if (ptrace_check_attach(thread, 0) < 0)
/*
* If the thread is not in an attachable state, we'll
* ignore it. The net effect is that if ADDR happens
* to overlap with the portion of the thread's
* register backing store that is currently residing
* on the thread's kernel stack, then ptrace() may end
* up accessing a stale value. But if the thread
* isn't stopped, that's a problem anyhow, so we're
* doing as well as we can...
*/
return 0;
thread_regs = task_pt_regs(thread);
thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
return 0;
return 1; /* looks like we've got a winner */
}
/*
* Write f32-f127 back to task->thread.fph if it has been modified.
*/
inline void
ia64_flush_fph (struct task_struct *task)
{
struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
/*
* Prevent migrating this task while
* we're fiddling with the FPU state
*/
preempt_disable();
if (ia64_is_local_fpu_owner(task) && psr->mfh) {
psr->mfh = 0;
task->thread.flags |= IA64_THREAD_FPH_VALID;
ia64_save_fpu(&task->thread.fph[0]);
}
preempt_enable();
}
/*
* Sync the fph state of the task so that it can be manipulated
* through thread.fph. If necessary, f32-f127 are written back to
* thread.fph or, if the fph state hasn't been used before, thread.fph
* is cleared to zeroes. Also, access to f32-f127 is disabled to
* ensure that the task picks up the state from thread.fph when it
* executes again.
*/
void
ia64_sync_fph (struct task_struct *task)
{
struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
ia64_flush_fph(task);
if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
task->thread.flags |= IA64_THREAD_FPH_VALID;
memset(&task->thread.fph, 0, sizeof(task->thread.fph));
}
ia64_drop_fpu(task);
psr->dfh = 1;
}
/*
* Change the machine-state of CHILD such that it will return via the normal
* kernel exit-path, rather than the syscall-exit path.
*/
static void
convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
unsigned long cfm)
{
struct unw_frame_info info, prev_info;
unsigned long ip, sp, pr;
unw_init_from_blocked_task(&info, child);
while (1) {
prev_info = info;
if (unw_unwind(&info) < 0)
return;
unw_get_sp(&info, &sp);
if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
< IA64_PT_REGS_SIZE) {
dprintk("ptrace.%s: ran off the top of the kernel "
"stack\n", __func__);
return;
}
if (unw_get_pr (&prev_info, &pr) < 0) {
unw_get_rp(&prev_info, &ip);
dprintk("ptrace.%s: failed to read "
"predicate register (ip=0x%lx)\n",
__func__, ip);
return;
}
if (unw_is_intr_frame(&info)
&& (pr & (1UL << PRED_USER_STACK)))
break;
}
/*
* Note: at the time of this call, the target task is blocked
* in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
* (aka, "pLvSys") we redirect execution from
* .work_pending_syscall_end to .work_processed_kernel.
*/
unw_get_pr(&prev_info, &pr);
pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
pr |= (1UL << PRED_NON_SYSCALL);
unw_set_pr(&prev_info, pr);
pt->cr_ifs = (1UL << 63) | cfm;
/*
* Clear the memory that is NOT written on syscall-entry to
* ensure we do not leak kernel-state to user when execution
* resumes.
*/
pt->r2 = 0;
pt->r3 = 0;
pt->r14 = 0;
memset(&pt->r16, 0, 16*8); /* clear r16-r31 */
memset(&pt->f6, 0, 6*16); /* clear f6-f11 */
pt->b7 = 0;
pt->ar_ccv = 0;
pt->ar_csd = 0;
pt->ar_ssd = 0;
}
static int
access_nat_bits (struct task_struct *child, struct pt_regs *pt,
struct unw_frame_info *info,
unsigned long *data, int write_access)
{
unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
char nat = 0;
if (write_access) {
nat_bits = *data;
scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
dprintk("ptrace: failed to set ar.unat\n");
return -1;
}
for (regnum = 4; regnum <= 7; ++regnum) {
unw_get_gr(info, regnum, &dummy, &nat);
unw_set_gr(info, regnum, dummy,
(nat_bits >> regnum) & 1);
}
} else {
if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
dprintk("ptrace: failed to read ar.unat\n");
return -1;
}
nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
for (regnum = 4; regnum <= 7; ++regnum) {
unw_get_gr(info, regnum, &dummy, &nat);
nat_bits |= (nat != 0) << regnum;
}
*data = nat_bits;
}
return 0;
}
static int
access_uarea (struct task_struct *child, unsigned long addr,
unsigned long *data, int write_access);
static long
ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
{
unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
struct unw_frame_info info;
struct ia64_fpreg fpval;
struct switch_stack *sw;
struct pt_regs *pt;
long ret, retval = 0;
char nat = 0;
int i;
if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
return -EIO;
pt = task_pt_regs(child);
sw = (struct switch_stack *) (child->thread.ksp + 16);
unw_init_from_blocked_task(&info, child);
if (unw_unwind_to_user(&info) < 0) {
return -EIO;
}
if (((unsigned long) ppr & 0x7) != 0) {
dprintk("ptrace:unaligned register address %p\n", ppr);
return -EIO;
}
if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
|| access_uarea(child, PT_AR_EC, &ec, 0) < 0
|| access_uarea(child, PT_AR_LC, &lc, 0) < 0
|| access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
|| access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
|| access_uarea(child, PT_CFM, &cfm, 0)
|| access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
return -EIO;
/* control regs */
retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
retval |= __put_user(psr, &ppr->cr_ipsr);
/* app regs */
retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
retval |= __put_user(cfm, &ppr->cfm);
/* gr1-gr3 */
retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
/* gr4-gr7 */
for (i = 4; i < 8; i++) {
if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
return -EIO;
retval |= __put_user(val, &ppr->gr[i]);
}
/* gr8-gr11 */
retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
/* gr12-gr15 */
retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
/* gr16-gr31 */
retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
/* b0 */
retval |= __put_user(pt->b0, &ppr->br[0]);
/* b1-b5 */
for (i = 1; i < 6; i++) {
if (unw_access_br(&info, i, &val, 0) < 0)
return -EIO;
__put_user(val, &ppr->br[i]);
}
/* b6-b7 */
retval |= __put_user(pt->b6, &ppr->br[6]);
retval |= __put_user(pt->b7, &ppr->br[7]);
/* fr2-fr5 */
for (i = 2; i < 6; i++) {
if (unw_get_fr(&info, i, &fpval) < 0)
return -EIO;
retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
}
/* fr6-fr11 */
retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
sizeof(struct ia64_fpreg) * 6);
/* fp scratch regs(12-15) */
retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
sizeof(struct ia64_fpreg) * 4);
/* fr16-fr31 */
for (i = 16; i < 32; i++) {
if (unw_get_fr(&info, i, &fpval) < 0)
return -EIO;
retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
}
/* fph */
ia64_flush_fph(child);
retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
sizeof(ppr->fr[32]) * 96);
/* preds */
retval |= __put_user(pt->pr, &ppr->pr);
/* nat bits */
retval |= __put_user(nat_bits, &ppr->nat);
ret = retval ? -EIO : 0;
return ret;
}
static long
ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
{
unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
struct unw_frame_info info;
struct switch_stack *sw;
struct ia64_fpreg fpval;
struct pt_regs *pt;
long ret, retval = 0;