forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustom_lstms.py
461 lines (374 loc) · 17.4 KB
/
custom_lstms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
import torch
import torch.nn as nn
from torch.nn import Parameter
import torch.jit as jit
import warnings
from collections import namedtuple
from typing import List, Tuple
from torch import Tensor
import numbers
'''
Some helper classes for writing custom TorchScript LSTMs.
Goals:
- Classes are easy to read, use, and extend
- Performance of custom LSTMs approach fused-kernel-levels of speed.
A few notes about features we could add to clean up the below code:
- Support enumerate with nn.ModuleList:
https://github.com/pytorch/pytorch/issues/14471
- Support enumerate/zip with lists:
https://github.com/pytorch/pytorch/issues/15952
- Support overriding of class methods:
https://github.com/pytorch/pytorch/issues/10733
- Support passing around user-defined namedtuple types for readability
- Support slicing w/ range. It enables reversing lists easily.
https://github.com/pytorch/pytorch/issues/10774
- Multiline type annotations. List[List[Tuple[Tensor,Tensor]]] is verbose
https://github.com/pytorch/pytorch/pull/14922
'''
def script_lstm(input_size, hidden_size, num_layers, bias=True,
batch_first=False, dropout=False, bidirectional=False):
'''Returns a ScriptModule that mimics a PyTorch native LSTM.'''
# The following are not implemented.
assert bias
assert not batch_first
if bidirectional:
stack_type = StackedLSTM2
layer_type = BidirLSTMLayer
dirs = 2
elif dropout:
stack_type = StackedLSTMWithDropout
layer_type = LSTMLayer
dirs = 1
else:
stack_type = StackedLSTM
layer_type = LSTMLayer
dirs = 1
return stack_type(num_layers, layer_type,
first_layer_args=[LSTMCell, input_size, hidden_size],
other_layer_args=[LSTMCell, hidden_size * dirs,
hidden_size])
def script_lnlstm(input_size, hidden_size, num_layers, bias=True,
batch_first=False, dropout=False, bidirectional=False,
decompose_layernorm=False):
'''Returns a ScriptModule that mimics a PyTorch native LSTM.'''
# The following are not implemented.
assert bias
assert not batch_first
assert not dropout
if bidirectional:
stack_type = StackedLSTM2
layer_type = BidirLSTMLayer
dirs = 2
else:
stack_type = StackedLSTM
layer_type = LSTMLayer
dirs = 1
return stack_type(num_layers, layer_type,
first_layer_args=[LayerNormLSTMCell, input_size, hidden_size,
decompose_layernorm],
other_layer_args=[LayerNormLSTMCell, hidden_size * dirs,
hidden_size, decompose_layernorm])
LSTMState = namedtuple('LSTMState', ['hx', 'cx'])
def reverse(lst):
# type: (List[Tensor]) -> List[Tensor]
return lst[::-1]
class LSTMCell(jit.ScriptModule):
def __init__(self, input_size, hidden_size):
super(LSTMCell, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.weight_ih = Parameter(torch.randn(4 * hidden_size, input_size))
self.weight_hh = Parameter(torch.randn(4 * hidden_size, hidden_size))
self.bias_ih = Parameter(torch.randn(4 * hidden_size))
self.bias_hh = Parameter(torch.randn(4 * hidden_size))
@jit.script_method
def forward(self, input, state):
# type: (Tensor, Tuple[Tensor, Tensor]) -> Tuple[Tensor, Tuple[Tensor, Tensor]]
hx, cx = state
gates = (torch.mm(input, self.weight_ih.t()) + self.bias_ih +
torch.mm(hx, self.weight_hh.t()) + self.bias_hh)
ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
ingate = torch.sigmoid(ingate)
forgetgate = torch.sigmoid(forgetgate)
cellgate = torch.tanh(cellgate)
outgate = torch.sigmoid(outgate)
cy = (forgetgate * cx) + (ingate * cellgate)
hy = outgate * torch.tanh(cy)
return hy, (hy, cy)
class LayerNorm(jit.ScriptModule):
def __init__(self, normalized_shape):
super(LayerNorm, self).__init__()
if isinstance(normalized_shape, numbers.Integral):
normalized_shape = (normalized_shape,)
normalized_shape = torch.Size(normalized_shape)
# XXX: This is true for our LSTM / NLP use case and helps simplify code
assert len(normalized_shape) == 1
self.weight = Parameter(torch.ones(normalized_shape))
self.bias = Parameter(torch.zeros(normalized_shape))
self.normalized_shape = normalized_shape
@jit.script_method
def compute_layernorm_stats(self, input):
mu = input.mean(-1, keepdim=True)
sigma = input.std(-1, keepdim=True, unbiased=False)
return mu, sigma
@jit.script_method
def forward(self, input):
mu, sigma = self.compute_layernorm_stats(input)
return (input - mu) / sigma * self.weight + self.bias
class LayerNormLSTMCell(jit.ScriptModule):
def __init__(self, input_size, hidden_size, decompose_layernorm=False):
super(LayerNormLSTMCell, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.weight_ih = Parameter(torch.randn(4 * hidden_size, input_size))
self.weight_hh = Parameter(torch.randn(4 * hidden_size, hidden_size))
# The layernorms provide learnable biases
if decompose_layernorm:
ln = LayerNorm
else:
ln = nn.LayerNorm
self.layernorm_i = ln(4 * hidden_size)
self.layernorm_h = ln(4 * hidden_size)
self.layernorm_c = ln(hidden_size)
@jit.script_method
def forward(self, input, state):
# type: (Tensor, Tuple[Tensor, Tensor]) -> Tuple[Tensor, Tuple[Tensor, Tensor]]
hx, cx = state
igates = self.layernorm_i(torch.mm(input, self.weight_ih.t()))
hgates = self.layernorm_h(torch.mm(hx, self.weight_hh.t()))
gates = igates + hgates
ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
ingate = torch.sigmoid(ingate)
forgetgate = torch.sigmoid(forgetgate)
cellgate = torch.tanh(cellgate)
outgate = torch.sigmoid(outgate)
cy = self.layernorm_c((forgetgate * cx) + (ingate * cellgate))
hy = outgate * torch.tanh(cy)
return hy, (hy, cy)
class LSTMLayer(jit.ScriptModule):
def __init__(self, cell, *cell_args):
super(LSTMLayer, self).__init__()
self.cell = cell(*cell_args)
@jit.script_method
def forward(self, input, state):
# type: (Tensor, Tuple[Tensor, Tensor]) -> Tuple[Tensor, Tuple[Tensor, Tensor]]
inputs = input.unbind(0)
outputs = torch.jit.annotate(List[Tensor], [])
for i in range(len(inputs)):
out, state = self.cell(inputs[i], state)
outputs += [out]
return torch.stack(outputs), state
class ReverseLSTMLayer(jit.ScriptModule):
def __init__(self, cell, *cell_args):
super(ReverseLSTMLayer, self).__init__()
self.cell = cell(*cell_args)
@jit.script_method
def forward(self, input, state):
# type: (Tensor, Tuple[Tensor, Tensor]) -> Tuple[Tensor, Tuple[Tensor, Tensor]]
inputs = reverse(input.unbind(0))
outputs = jit.annotate(List[Tensor], [])
for i in range(len(inputs)):
out, state = self.cell(inputs[i], state)
outputs += [out]
return torch.stack(reverse(outputs)), state
class BidirLSTMLayer(jit.ScriptModule):
__constants__ = ['directions']
def __init__(self, cell, *cell_args):
super(BidirLSTMLayer, self).__init__()
self.directions = nn.ModuleList([
LSTMLayer(cell, *cell_args),
ReverseLSTMLayer(cell, *cell_args),
])
@jit.script_method
def forward(self, input, states):
# type: (Tensor, List[Tuple[Tensor, Tensor]]) -> Tuple[Tensor, List[Tuple[Tensor, Tensor]]]
# List[LSTMState]: [forward LSTMState, backward LSTMState]
outputs = jit.annotate(List[Tensor], [])
output_states = jit.annotate(List[Tuple[Tensor, Tensor]], [])
# XXX: enumerate https://github.com/pytorch/pytorch/issues/14471
i = 0
for direction in self.directions:
state = states[i]
out, out_state = direction(input, state)
outputs += [out]
output_states += [out_state]
i += 1
return torch.cat(outputs, -1), output_states
def init_stacked_lstm(num_layers, layer, first_layer_args, other_layer_args):
layers = [layer(*first_layer_args)] + [layer(*other_layer_args)
for _ in range(num_layers - 1)]
return nn.ModuleList(layers)
class StackedLSTM(jit.ScriptModule):
__constants__ = ['layers'] # Necessary for iterating through self.layers
def __init__(self, num_layers, layer, first_layer_args, other_layer_args):
super(StackedLSTM, self).__init__()
self.layers = init_stacked_lstm(num_layers, layer, first_layer_args,
other_layer_args)
@jit.script_method
def forward(self, input, states):
# type: (Tensor, List[Tuple[Tensor, Tensor]]) -> Tuple[Tensor, List[Tuple[Tensor, Tensor]]]
# List[LSTMState]: One state per layer
output_states = jit.annotate(List[Tuple[Tensor, Tensor]], [])
output = input
# XXX: enumerate https://github.com/pytorch/pytorch/issues/14471
i = 0
for rnn_layer in self.layers:
state = states[i]
output, out_state = rnn_layer(output, state)
output_states += [out_state]
i += 1
return output, output_states
# Differs from StackedLSTM in that its forward method takes
# List[List[Tuple[Tensor,Tensor]]]. It would be nice to subclass StackedLSTM
# except we don't support overriding script methods.
# https://github.com/pytorch/pytorch/issues/10733
class StackedLSTM2(jit.ScriptModule):
__constants__ = ['layers'] # Necessary for iterating through self.layers
def __init__(self, num_layers, layer, first_layer_args, other_layer_args):
super(StackedLSTM2, self).__init__()
self.layers = init_stacked_lstm(num_layers, layer, first_layer_args,
other_layer_args)
@jit.script_method
def forward(self, input, states):
# type: (Tensor, List[List[Tuple[Tensor, Tensor]]]) -> Tuple[Tensor, List[List[Tuple[Tensor, Tensor]]]]
# List[List[LSTMState]]: The outer list is for layers,
# inner list is for directions.
output_states = jit.annotate(List[List[Tuple[Tensor, Tensor]]], [])
output = input
# XXX: enumerate https://github.com/pytorch/pytorch/issues/14471
i = 0
for rnn_layer in self.layers:
state = states[i]
output, out_state = rnn_layer(output, state)
output_states += [out_state]
i += 1
return output, output_states
class StackedLSTMWithDropout(jit.ScriptModule):
# Necessary for iterating through self.layers and dropout support
__constants__ = ['layers', 'num_layers']
def __init__(self, num_layers, layer, first_layer_args, other_layer_args):
super(StackedLSTMWithDropout, self).__init__()
self.layers = init_stacked_lstm(num_layers, layer, first_layer_args,
other_layer_args)
# Introduces a Dropout layer on the outputs of each LSTM layer except
# the last layer, with dropout probability = 0.4.
self.num_layers = num_layers
if (num_layers == 1):
warnings.warn("dropout lstm adds dropout layers after all but last "
"recurrent layer, it expects num_layers greater than "
"1, but got num_layers = 1")
self.dropout_layer = nn.Dropout(0.4)
@jit.script_method
def forward(self, input, states):
# type: (Tensor, List[Tuple[Tensor, Tensor]]) -> Tuple[Tensor, List[Tuple[Tensor, Tensor]]]
# List[LSTMState]: One state per layer
output_states = jit.annotate(List[Tuple[Tensor, Tensor]], [])
output = input
# XXX: enumerate https://github.com/pytorch/pytorch/issues/14471
i = 0
for rnn_layer in self.layers:
state = states[i]
output, out_state = rnn_layer(output, state)
# Apply the dropout layer except the last layer
if i < self.num_layers - 1:
output = self.dropout_layer(output)
output_states += [out_state]
i += 1
return output, output_states
def flatten_states(states):
states = list(zip(*states))
assert len(states) == 2
return [torch.stack(state) for state in states]
def double_flatten_states(states):
# XXX: Can probably write this in a nicer way
states = flatten_states([flatten_states(inner) for inner in states])
return [hidden.view([-1] + list(hidden.shape[2:])) for hidden in states]
def test_script_rnn_layer(seq_len, batch, input_size, hidden_size):
inp = torch.randn(seq_len, batch, input_size)
state = LSTMState(torch.randn(batch, hidden_size),
torch.randn(batch, hidden_size))
rnn = LSTMLayer(LSTMCell, input_size, hidden_size)
out, out_state = rnn(inp, state)
# Control: pytorch native LSTM
lstm = nn.LSTM(input_size, hidden_size, 1)
lstm_state = LSTMState(state.hx.unsqueeze(0), state.cx.unsqueeze(0))
for lstm_param, custom_param in zip(lstm.all_weights[0], rnn.parameters()):
assert lstm_param.shape == custom_param.shape
with torch.no_grad():
lstm_param.copy_(custom_param)
lstm_out, lstm_out_state = lstm(inp, lstm_state)
assert (out - lstm_out).abs().max() < 1e-5
assert (out_state[0] - lstm_out_state[0]).abs().max() < 1e-5
assert (out_state[1] - lstm_out_state[1]).abs().max() < 1e-5
def test_script_stacked_rnn(seq_len, batch, input_size, hidden_size,
num_layers):
inp = torch.randn(seq_len, batch, input_size)
states = [LSTMState(torch.randn(batch, hidden_size),
torch.randn(batch, hidden_size))
for _ in range(num_layers)]
rnn = script_lstm(input_size, hidden_size, num_layers)
out, out_state = rnn(inp, states)
custom_state = flatten_states(out_state)
# Control: pytorch native LSTM
lstm = nn.LSTM(input_size, hidden_size, num_layers)
lstm_state = flatten_states(states)
for layer in range(num_layers):
custom_params = list(rnn.parameters())[4 * layer: 4 * (layer + 1)]
for lstm_param, custom_param in zip(lstm.all_weights[layer],
custom_params):
assert lstm_param.shape == custom_param.shape
with torch.no_grad():
lstm_param.copy_(custom_param)
lstm_out, lstm_out_state = lstm(inp, lstm_state)
assert (out - lstm_out).abs().max() < 1e-5
assert (custom_state[0] - lstm_out_state[0]).abs().max() < 1e-5
assert (custom_state[1] - lstm_out_state[1]).abs().max() < 1e-5
def test_script_stacked_bidir_rnn(seq_len, batch, input_size, hidden_size,
num_layers):
inp = torch.randn(seq_len, batch, input_size)
states = [[LSTMState(torch.randn(batch, hidden_size),
torch.randn(batch, hidden_size))
for _ in range(2)]
for _ in range(num_layers)]
rnn = script_lstm(input_size, hidden_size, num_layers, bidirectional=True)
out, out_state = rnn(inp, states)
custom_state = double_flatten_states(out_state)
# Control: pytorch native LSTM
lstm = nn.LSTM(input_size, hidden_size, num_layers, bidirectional=True)
lstm_state = double_flatten_states(states)
for layer in range(num_layers):
for direct in range(2):
index = 2 * layer + direct
custom_params = list(rnn.parameters())[4 * index: 4 * index + 4]
for lstm_param, custom_param in zip(lstm.all_weights[index],
custom_params):
assert lstm_param.shape == custom_param.shape
with torch.no_grad():
lstm_param.copy_(custom_param)
lstm_out, lstm_out_state = lstm(inp, lstm_state)
assert (out - lstm_out).abs().max() < 1e-5
assert (custom_state[0] - lstm_out_state[0]).abs().max() < 1e-5
assert (custom_state[1] - lstm_out_state[1]).abs().max() < 1e-5
def test_script_stacked_lstm_dropout(seq_len, batch, input_size, hidden_size,
num_layers):
inp = torch.randn(seq_len, batch, input_size)
states = [LSTMState(torch.randn(batch, hidden_size),
torch.randn(batch, hidden_size))
for _ in range(num_layers)]
rnn = script_lstm(input_size, hidden_size, num_layers, dropout=True)
# just a smoke test
out, out_state = rnn(inp, states)
def test_script_stacked_lnlstm(seq_len, batch, input_size, hidden_size,
num_layers):
inp = torch.randn(seq_len, batch, input_size)
states = [LSTMState(torch.randn(batch, hidden_size),
torch.randn(batch, hidden_size))
for _ in range(num_layers)]
rnn = script_lnlstm(input_size, hidden_size, num_layers)
# just a smoke test
out, out_state = rnn(inp, states)
test_script_rnn_layer(5, 2, 3, 7)
test_script_stacked_rnn(5, 2, 3, 7, 4)
test_script_stacked_bidir_rnn(5, 2, 3, 7, 4)
test_script_stacked_lstm_dropout(5, 2, 3, 7, 4)
test_script_stacked_lnlstm(5, 2, 3, 7, 4)