-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBCchannel.tex
937 lines (874 loc) · 40.5 KB
/
BCchannel.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
\documentclass[xcolor=dvipsnames,aspectratio=169]{beamer}
% INCLUSIÓN DOS PAQUETES IMPRESCINDIBLES DE IDIOMA E CODIFICACIÓN DE CARACTERE.
\usepackage[T1]{fontenc}
\usepackage[english]{babel}
\usepackage[utf8]{inputenc}
\usepackage{csquotes}
%ACRONYMS para engadir un glosario de acronimos automatizado
% \usepackage[acronyms,nonumberlist,nopostdot,nomain,nogroupskip]{glossaries}
% \input{./acronyms.tex}
% PAQUETES PARA FIGURAS E GRAFICOS
\usepackage{graphicx}
% \usepackage[pdftex]{graphicx}
\usepackage{epstopdf}
\graphicspath{{./img/}}
% and their extensions so you won't have to specify these with
% every instance of \includegraphics
\DeclareGraphicsExtensions{.eps,.pdf,.png,.jpg}
\usepackage{subfigure}
\usepackage{caption}
%Tikz plots
\usepackage{tikz}
\usepackage{tikzscale}
\usetikzlibrary{plotmarks,patterns,decorations.pathreplacing,backgrounds,calc,arrows,arrows.meta,spy,matrix,backgrounds,shapes}
\tikzset{
block/.style = {draw, rectangle,
minimum height=1cm,
minimum width=1.2cm},
input/.style = {coordinate,node distance=1cm},
output/.style = {coordinate,node distance=2cm},
arrow/.style={draw, -latex,node distance=1.5cm},
pinstyle/.style = {pin edge={latex-, black,node distance=1.5cm}},
sum/.style = {draw, circle, node distance=1cm}
}
\newcommand{\tikzmark}[1]{\tikz[overlay,remember picture] \UE (#1) {};}
\newcommand{\DrawBox}[4][]{%
\tikz[overlay,remember picture]{%
\coordinate (TopLeft) at ($(#2)+(-0.4em,1.6em)$);
\coordinate (BottomRight) at ($(#3)+(0.4em,-1.0em)$);
%
\path (TopLeft); \pgfgetlastxy{\XCoord}{\IgnoreCoord};
\path (BottomRight); \pgfgetlastxy{\IgnoreCoord}{\YCoord};
\coordinate (LabelPoint) at ($(\XCoord,\YCoord)!0.5!(BottomRight)$);
%
\draw [red,#1] (TopLeft) rectangle (BottomRight);
\UE [below, #1, fill=none, fill opacity=1] at (LabelPoint) {#4};
}
}
\usepackage{pgfplots}
\pgfplotsset{compat=newest}
\pgfplotsset{plot coordinates/math parser=false}
\usepgfplotslibrary{patchplots,groupplots}
% OUTROS PAQUETES DE USO COMUN. HOXE EN DIA OS COMPILADORES SON TAN RAPIDOS QUE EU METO TODOS SEMPRE
% \usepackage{float}
% \usepackage{ucs}
% \usepackage{subcaption}
\usepackage{psfrag}
\usepackage{verbatim}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{pifont}
\usepackage{array}
\usepackage{listings}
\usepackage{stfloats}
\usepackage{algorithm}
\usepackage{algorithmic}
\usepackage{url}
\usepackage{enumerate}
\usepackage{multirow}
\usepackage{wasysym}
\usepackage{cancel}
\usepackage{lmodern}
\usepackage{mathrsfs}
\input{EETbeamerconfig.tex}
\input{mydefinitions.tex}
%---------------
% LIMIAR
%---------------
%configuracion de opcions de beamer persoais, pero alleas ao estilo
% COMANDO QUE INTRODUCE UNHA DIAPOSITIVA CUN ÍNDICE NO QUE APARECEN VELADAS TÓDALAS SECCIÓNS MENOS A ACTUAL. ÚTIL PARA INTRODUCIR OS TÍPICOS ÍNDICES INTERMEDIOS.
\newcommand{\Inter}{\frame{\tableofcontents[currentsection]}}
\newcommand{\inter}{\frame{\tableofcontents[currentsection,currentsubsection]}}
% Pes de imaxe
\renewcommand{\figurename}{Fig.}
\addto\captionsenglish{\renewcommand{\figurename}{Fig.}}
\setbeamertemplate{caption}[numbered]
%ESTE PAQUETE PERMITE POÑER A BIBLIOGRAFIA AO PE DE PAXINA CON CONFIGURACIONS ESTETICAS PERSOAIS
% \usepackage[style=ieee,doi=false,isbn=false,url=true,backend=bibtex]{biblatex}
% \bibliography{./bibliografia.bib}
% \newrobustcmd*{\footfullcitenomark}{%
% \AtNextCite{%
% \let\thefootnote\relax
% \let\mkbibfootnote\mkbibfootnotetext
% }%
% \footfullcite}
%paquete para engadir notas de guion ao pdf
\usepackage{pgfpages}
% \setbeameroption{show only notes}
% \setbeameroption{show notes}
% \setbeameroption{show notes on second screen=right}
% DATOS DO DOCUMENTO
\title{Advanced Communication Systems}
\subtitle{Part 2.2:\\ Multi-user Communications:\\ Broadcast Channel}
\author[FGC]{Felipe G\'omez Cuba}
\institute[XX]{
\begin{columns}[T]
\begin{column}{9cm}\centering
Despacho 204\\
Titorías: Lun-Xov 15:00-16:30\\
(En caso de confinamento: videochamada a calquera horario acordado)\\
\texttt{[email protected]}\\
\end{column}
\end{columns}
}
\date{2 \& 4 \& 9 November 2020 }
\begin{document}
% Diapositiva co título
%\frame[plain]{\titlepage}%the ``classic'' beamer cover pageç
\frame{\frametitle{\\}%generate top bar, but blank line as tittle
\titlepage
}%approximation to the ``GPSC ppt'' cover page, but with central beamer title
% \frame{\tableofcontents}
% \note[itemize]{%itemized notes are special ``note'' slides that beamer can append to the pdf or not, depending on a boolean toggle option
% \item Introduce yourself
% \item In this work we studied blablabla.
% }
% \section{IAB MmWave Network}
\frame[allowframebreaks]{\frametitle{Broadcast Channel}
\begin{figure}
\begin{tikzpicture}[scale=.5]
\draw [->] (.75,0.25) -- (5.25,1.25);
\draw [->] (.75,-0.25) -- (5.25,-1.25);
\node[draw,circle] at (6,1.5) {$\y_1$};
\node[draw,circle] at (6,-1.5) {$\y_2$};
\node[draw,circle] at (0,0) {$\x$};
\node[anchor=south] at (3.5,.75) {$\Hb_1^H$};
\node[anchor=north] at (3.5,-.75) {$\Hb_2^H$};
\end{tikzpicture}
\end{figure}
\begin{itemize}
\item Directed graph with one transmitter and $K$ receivers
\begin{itemize}
\item Each user $k$ decodes signal $\y_k$ \textit{independently}
\item General case $(Y_1,\dots Y_K) \sim f((\y_1\dots \y_K)|\x)$ (dependent)\\ \ \\
\end{itemize}
\item AWGN BC channel
$$\y_k = \Hb_k^H\x+\z_k\; \forall k\in\{1\dots K\}$$
\item Channel Reciprocity: $\Hb_k$ in MAC $\to$ $\Hb_k^H$ in BC\\ \ \\
\item Example: \textit{Downlink} in a mobile cellular system\\ \ \\
\item All devices may have one or multiple antennas\\ \ \\
\item Independent message to each $k$ with rate $R_k$
\begin{itemize}
\item Do not confuse with the expression ``TV Broadcast''\\ \ \\
\end{itemize}
\item \textit{One possible way} to generate $\x$ is
$$\x=\sum_{k=1}^{K}\x_k\to \y_k = \Hb_k^H\left(\sum_{k'=1}^{K}\x_{k'}\right)+\z_k$$
\item Difference with MAC: same $\Hb_k^H$ multiplies all $\x_{k'}$'s
\end{itemize}
}
\frame{\frametitle{2-user AWGN SISO BC Capacity Region}
\begin{itemize}
\item Assume $K=2$, $N_{t}=N_{r1}=N_{r2}=1$, and $|h_1|<|h_2|$
\item<3-> $|h_1|<|h_2|\to$ ``U2 can decode everything U1 can decode''
\end{itemize}
\begin{equation}
\mathcal{C}\subset \left\{
\begin{array}{rl}
\onslide<1->{
\textcolor{ARust}{R_1}&\textcolor{ARust}{\leq \log(1+\frac{P|h_1|^2}{BN_o})}\\
}
\onslide<2->{
\textcolor{VCobalt}{R_2}&\textcolor{VCobalt}{\leq \log(1+\frac{P|h_2|^2}{BN_o})}\\
}
\onslide<3->{
\textcolor{KYJade}{ R_1+R_2}&\textcolor{KYJade}{ \leq \log(1+\frac{P_1|h_1|^2+P_2|h_2|^2}{BN_o})}
}
\end{array}
\right\}
\end{equation}
% \onslide<3->{$$\textnormal{ choosing } \x=\sqrt{\frac{P_1}{P}}\x_1+\sqrt{\frac{P_2}{P}}\x_2$$}
\begin{columns}
\begin{column}{6cm}
\begin{figure}
\begin{tikzpicture}[scale=.5]
\draw [->] (.75,0.25) -- (5.25,1.25);
\draw [->] (.75,-0.25) -- (5.25,-1.25);
\node[draw,circle] at (6,1.5) {$y_1$};
\node[draw,circle] at (6,-1.5) {$y_2$};
\node[draw,circle] at (0,0) {$x$};
\node[anchor=south] at (3.5,.75) {$h_1^*$};
\node[anchor=north] at (3.5,-.75) {$h_2^*$};
\onslide<1->{
\draw [ARust,dashed,domain=-90:45] plot ({6-1.3*cos(\x)}, {1.5+1.3*sin(\x)});
\node[color=ARust,anchor=south] at (5,2.5) {$x=x_1$};
}
\onslide<2->{
\draw [VCobalt,dashed,domain=-45:90] plot ({6-1.3*cos(\x)}, {-1.5+1.3*sin(\x)});
\node[color=VCobalt,anchor=north] at (5,-2.5) {$x=x_2$};
}
\onslide<3->{
\draw [KYJade,dashed,domain=-45:45] plot ({6-2*cos(\x)}, {4*sin(\x)});
\node[color=KYJade,anchor=east] at (4,2.25) {$x=\sqrt{\frac{P_1}{P}}x_1+\sqrt{\frac{P_2}{P}}x_2$};
}
\end{tikzpicture}
\end{figure}
\end{column}
\begin{column}{6cm}
\begin{figure}
\begin{tikzpicture}[scale=.9]
\draw[help lines,color=gray,dotted] (0,0) grid (4,4);
% \onslide<3->{\fill[color=yellow!25] (0,0) -- (3,0) -- (3,1) -- (1,3) -- (0,3) -- (0,0);}
\draw [->] (0,0) -- (0,4.2);
\draw [->] (0,0) -- (4.2,0);
\node [anchor=north] at (2,-0.3) {$R_1$};
\node [anchor=east] at (-0.3,4) {$R_2$};
% % \foreach \x in {0,1,...,4} { \node [anchor=north] at (\x,-0.3) {\tiny \x}; }
% % \foreach \y in {0,1,...,4} { \node [anchor=east] at (-0.3,\y) {\tiny \y}; }
\onslide<1->{\draw[color=ARust,thick] (3,-.5) -- (3,.5);}
\onslide<2->{\draw[color=VCobalt,thick] (-.5,4) -- (.5,4);}
%
% \onslide<3->{
% \draw[color=gray,dotted] (0,0) -- (2,2);
\onslide<3->{
% % \note [name=p1] at (ln(1+7.1*.25/1.75)/ln(2), ln(1+15*.75)/ln(2)) {};
% % \note [name=p2] at (ln(1+7.1*.25)/ln(2), ln(1+15*.75/1.25)/ln(2)) {};
\coordinate (A) at ({ln(1+7.1*.25)/ln(2)}, {ln(1+15*.75/1.25)/ln(2)});
\coordinate (B) at ({ln(1+7.1*.25/1.75)/ln(2)}, {ln(1+15*.75)/ln(2)});
\draw[KYJade] (B) circle (.1);
\fill[KYJade] (B) circle (.1);
}
\onslide<3-3>{
\draw[KYJade,dashed] (A |- 0,0) -- (A) -- (B) -- (0,0 |- B);
\node[color=KYJade,anchor=west] at (B) {$P_2=\frac{3}{4}P$};
}
\onslide<4->{
% % \note [name=p1] at (ln(1+7.1*.25/1.75)/ln(2), ln(1+15*.75)/ln(2)) {};
% % \note [name=p2] at (ln(1+7.1*.25)/ln(2), ln(1+15*.75/1.25)/ln(2)) {};
\coordinate (A) at ({ln(1+7.1*.5)/ln(2)}, {ln(1+15*.5/1.5)/ln(2)});
\coordinate (B) at ({ln(1+7.1*.5/1.5)/ln(2)}, {ln(1+15*.5)/ln(2)});
\draw[KYJade] (B) circle (.1);
\fill[KYJade] (B) circle (.1);
}
\onslide<4-4>{
\draw[KYJade,dashed] (A |- 0,0) -- (A) -- (B) -- (0,0 |- B);
\node[color=KYJade,anchor=west] at (B) {$P_2=\frac{1}{2}P$};
}
\onslide<5->{
% % \note [name=p1] at (ln(1+7.1*.25/1.75)/ln(2), ln(1+15*.75)/ln(2)) {};
% % \note [name=p2] at (ln(1+7.1*.25)/ln(2), ln(1+15*.75/1.25)/ln(2)) {};
\coordinate (A) at ({ln(1+7.1*.8)/ln(2)}, {ln(1+15*.2/1.8)/ln(2)});
\coordinate (B) at ({ln(1+7.1*.8/1.2)/ln(2)}, {ln(1+15*.2)/ln(2)});
\draw[KYJade,dashed] (A |- 0,0) -- (A) -- (B) -- (0,0 |- B);
\draw[KYJade] (B) circle (.1);
\fill[KYJade] (B) circle (.1);
}
\onslide<5-5>{
\node[color=KYJade,anchor=west] at (B) {$P_2=\frac{1}{5}P$};
\draw[KYJade,dashed] (A |- 0,0) -- (A) -- (B) -- (0,0 |- B);
}
\onslide<6->{
\draw [KYJade,domain=1:99] plot ({ln(1+7.1*\x/100/(2-\x/100))/ln(2)}, {ln(1+15*(100-\x)/100)/ln(2)});
}
% % \onslide<3->{\node at (1,1) {$\mathcal{C}$}; }
\end{tikzpicture}
\end{figure}
\end{column}
\end{columns}
}
\frame{\frametitle{Degraded BC Channel}
\begin{definition}
A general 2-user BC channel is said to be \textbf{degraded} if its p.d.f. can be written as $f(Y_1,Y_2|X)=f(Y_2|Y_1)f(Y_1|X)$.
\end{definition}
\begin{theorem}[Capacity of Degraded BC Channel $X\to Y_1\to Y_2$]
If we define an auxiliary random variable $V$ with distribution $f(v)$
$$\mathcal{C}= \left\{\vec{R}:\begin{array}{rl}
R_1&\leq \Inf{V}{Y_1}\\
R_2&\leq \CInf{X}{Y_2}{V}\\
\end{array}\forall f(v): |\mathcal{V}|\leq \min(|\mathcal{X}|,|\mathcal{Y}_1|,|\mathcal{Y}_2|) \right\}$$
\end{theorem}
\begin{remark}
The AWGN SISO MAC capacity region is an example of Degraded BC Channel with $v=x_1$ and $f(y_2,y_1)= f_{x_2}(y_2-y_1)f(y_1)$.
\end{remark}
\begin{itemize}
\item We need to \textbf{order} the users defining a chain. Since there is no trivial ordering of vectors, MIMO BC is more difficult.
\end{itemize}
}
\frame{\frametitle{$K$-User SISO MAC Channel}
\begin{itemize}
\item Consider the $K$-User SISO MAC Channel
$$y_k=h_k\left(\sum_{k'=1}^{K}x_{k'}\right) + z_k$$
\item Assume users are labeled in increasing channel order
$$|h_1|\leq|h_2|\leq\dots\leq|h_K|$$
\end{itemize}
\begin{theorem}
For each user $k$ in a $K$-User SISO MAC Channel, user $k$ can achieve rate
$$R_k=B\log\left(1+\frac{P_k|h_k|^2}{BN_o+|h_k|^2\sum_{k'=k+1}^{K}P_{k'}}\right)$$
\end{theorem}
}
\frame{\frametitle{Superposition Coding}
\begin{itemize}
\item Let $x_1 \in \mathcal{C}_1$, $x_2 \in \mathcal{C}_2$, and $\sqrt{\alpha}x_1+\sqrt{1-\alpha}x_2\triangleq x \in \mathcal{C}$
\begin{figure}
\begin{tikzpicture}[scale=.4]
\draw[help lines,color=gray,dotted] (-3.2,-3.2) grid (3.2,3.2);
\draw [<->] (0,-3.5) -- (0,3.5);
\draw [<->] (-3.5,0) -- (3.5,0);
\node[anchor=north] at (3,0) {\Tiny $\Re\{\x\}$};
\node[anchor=east] at (0,3) {\Tiny $\Im\{\x\}$};
\node[draw,cross=2pt] at (2,2) {};
\fill[VCobalt] (2.5,2.5) circle (.2);
\fill[VCobalt] (1.5,1.5) circle (.2);
\fill[VCobalt] (2.5,1.5) circle (.2);
\fill[VCobalt] (1.5,2.5) circle (.2);
\node[draw,cross=2pt] at (-2,2) {};
\fill[VCobalt] (-2.5,2.5) circle (.2);
\fill[VCobalt] (-1.5,1.5) circle (.2);
\fill[VCobalt] (-2.5,1.5) circle (.2);
\fill[VCobalt] (-1.5,2.5) circle (.2);
\node[draw,cross=2pt] at (2,-2) {};
\fill[VCobalt] (2.5,-2.5) circle (.2);
\fill[VCobalt] (1.5,-1.5) circle (.2);
\fill[VCobalt] (2.5,-1.5) circle (.2);
\fill[VCobalt] (1.5,-2.5) circle (.2);
\node[draw,cross=2pt] at (-2,-2) {};
\fill[VCobalt] (-2.5,-2.5) circle (.2);
\fill[VCobalt] (-1.5,-1.5) circle (.2);
\fill[VCobalt] (-2.5,-1.5) circle (.2);
\fill[VCobalt] (-1.5,-2.5) circle (.2);
\end{tikzpicture}
\caption{QPSK $x_1$ combined with QPSK $x_2$}
\end{figure}
\item User 1 decodes $\mathcal{C}_1$\\ \ \\
\item User 2 with ML $$\arg\max_{x\in\mathcal{C}}\|y_2-h_2x\|^2$$
\item User 2 with DF $$\arg\max_{x_2\in\mathcal{C}_2}\|y_2-h_2\hat{x}_1-h_2x_2\|^2\leftarrow \hat{x}_1=\arg\max_{\x_1\in\mathcal{C}_1}\|y_2-h_2x_1\|^2$$
\end{itemize}
}
\frame{\frametitle{Homework: Common Message BC}
% \begin{homework}
We can generalize the BC to include the ``TV broadcast'' with the same message to all users, and intermediate cases.
Consider a 2-user SISO Gaussian BC with $|h_1|<|h_2|$ with \textbf{three messages} and a \textbf{3D} rate vector $(R_c,R_1,R_2)$ defined as follows
$$y_k=h_k (x_c+x_1+x_2)+z_k\quad\forall k \in\{1,2\}$$
\vspace{-.3in}
\begin{itemize}
\item $x_c$ is a \textbf{commmon message} that both U1 and U2 want to decode.
\item $x_1$ is the normal \textbf{individual message} U1 wants to decode.
\item $x_2$ is the normal \textbf{individual message} U2 wants to decode.
\end{itemize}
Write a set of constraints that characterizes the \textbf{3D} region of achievable rate triplets $(R_c,R_1,R_2)\in\mathcal{C}_{CM-BC}$. (Hint: U2 \textbf{can} decode both $x_c$ and $x_1$, the only difference between these two messages is that U2 also wants to keep $x_c$ for themself after using it to cancel interference)
% \end{homework}
}
\frame[allowframebreaks]{\frametitle{MAC -- BC duality (SISO)}
\begin{lemma}
The capacity region of the MAC channel with powers $\vec{P}=\left(P_1,P_2,\dots P_K\right)$ is a subset of the capacity region of the dual BC with power constraint $\displaystyle P=\sum_{k=1}^{K} P_k$.
\end{lemma}
\begin{remark}
The boundaries intersect at exactly one point if the channel gains of all users are different.
\end{remark}
\begin{theorem}[Capacity Region of the BC Channel]
$$\mathcal{C}_{BC}=\bigcup_{\vec{P}:\sum_{k=1}^{K} P_k=P}\mathcal{C}_{MAC}(\vec{P},\h)$$
\end{theorem}
\begin{definition}[Dual MAC {[DMAC]}]
A special MAC \textbf{with $K$ transmitted symbols}, freedom to choose transmitter power $\vec{P}^{DMAC}=(P_1^{DMAC},\dots,P_K^{DMAC})$, and \textbf{global} power constraint $\sum_{k=1}^{K} P^{DMAC}_k=P$.
$$y^{DMAC}=\sum_{k=1}^K h_k x_k^{DMAC}+z^{DMAC}=(h_1\dots h_K)\x^{DMAC}+z^{DMAC}$$
\end{definition}
\begin{theorem}
$\mathcal{C}_{DMAC}=\mathcal{C}_{BC}$, but for a given set of rates $\vec{R}\in\mathcal{C}_{BC}$ the power allocations that achieve it are not necessarily the same in both systems $\vec{P}^{DMAC}(\vec{R})\neq\vec{P}(\vec{R})$.
\end{theorem}
\pagebreak
\begin{remark}[Boundary of $\mathcal{C}_{DMAC}$ as a Convex Optimization]
We can fully compute the boundary of $\mathcal{C}_{DMAC}$ as the following convex optimization
$$\max_{\vec{R},\vec{P}^{DMAC}} \left(\mu_1,\dots,\mu_K\right)\left(\begin{array}{c}R_1\\\vdots\\R_K\end{array}\right)\textnormal{ s.t. }\begin{cases}\sum_{k=1}^{K} P_k^{DMAC}=P\\\sum_{k=1}^{K} \mu_k=1\\ \vec{R}\in\mathcal{C}_{MAC}(\vec{P},\h) \end{cases}$$
This convex problem is more tractable than a direct calculation of the boundary of $\mathcal{C}_{BC}$ (non-convex)
\end{remark}
\pagebreak
\begin{remark}
In DMAC the strongest user decodes first, but in BC the strongest user decodes last.
\end{remark}
\begin{lemma}[Dual Power Relations]
$$P^{DMAC}_{\pi(k)}=P^{BC}_{\pi(k)}\frac{A_k}{B_k}\quad \forall k\in\{1\dots K\}$$
where $ A_k=\sigma^2+|h_{\pi(k)}|^2\sum_{k'=1}^{k-1}P_{\pi(k')}^{BC},$ and $ B_k=\sigma^2+\sum_{k'=k+1}^{K}|h_{\pi(k')}|^2P_{\pi(k')}^{DMAC}$
\end{lemma}
\pagebreak
Computing $\vec{P}$ to achieve $\vec{R}$ in SISO BC channel:
\begin{enumerate}
\item Order users $|h_1|\leq \dots \leq |h_K|$\\ \ \\
\item Write the DMAC of the BC
\begin{itemize}
\item Reverse decoding order
\item $K$ transmitted symbols
\item Conjugate channel coefficients $(h_1\dots h_K)$\\ \ \\
\end{itemize}
\item Compute $\vec{P}^{DMAC}$ for the dual (convex problem)\\ \ \\
\item Obtain $\vec{P}$ from $\vec{P}^{DMAC}$ \\ \ \\
\end{enumerate}
}
% \begin{columns}
% \begin{column}{6cm}
% \begin{equation}
% \y_{BC}=
% \left(\begin{array}{c}
% y_1\\
% y_2\\
% \vdots\\
% y_K\\
% \end{array}\right)
% =
% \left(\begin{array}{c}
% h_1\left(\sum_{k=1}^{K}x_k\right)+z_1\\
% h_2\left(\sum_{k=1}^{K}x_k\right)+z_2\\
% \vdots\\
% h_k\left(\sum_{k=1}^{K}x_k\right)+z_k\\
% \end{array}\right)
% =\h_{BC}\x+\z
% \end{equation}
% \end{column}
% \begin{column}{6cm}
% \begin{equation}
% \begin{split}
% \y_1&=\Hb_1\left(\sum_{k=1}^{K}\x_k\right)+\z_1\\
% \y_2&=\Hb_2\left(\sum_{k=1}^{K}\x_k\right)+\z_2\\
% \vdots\\
% \y_k&=\Hb_1\left(\sum_{k=1}^{K}\x_k\right)+\z_k\\
% \end{split}
% \end{equation}
% \end{column}
% \end{columns}
\frame[allowframebreaks]{\frametitle{MIMO BC Channel}
\begin{figure}
\begin{tikzpicture}[scale=.45]
\draw [->] (.75,0.25) -- (5.25,1.25);
\draw [->] (.75,-0.25) -- (5.25,-1.25);
\node[draw,circle] at (6,1.5) {$\y_1$};
\node[draw,circle] at (6,-1.5) {$\y_2$};
\node[draw,circle] at (0,0) {$\x$};
\node[anchor=south] at (3.5,.75) {};
\node[anchor=north] at (3.5,-.75) {};
\end{tikzpicture}
\caption{General case with arbitrary $f(\{\y_k\}_{k=1}^{K},\x)$}
\end{figure}
\begin{definition}[Gel'fand-Pinsker Channel]
A single user channel with an interference r.v. $W$ \textbf{known to the transmitter}, with p.d.f. $f(Y|X,W)$
$$C_{GPC}=\sup_{f(X,V|W)}\Inf{V}{Y}-\Inf{V}{W}$$
where $V$ is an auxiliar r.v.
\end{definition}
\pagebreak
\begin{definition}[Marton's Inner Bound]
An inner bound $\mathcal{C}_{Marton}\subset \mathcal{C}_{BC}$ based on the GPC.
$$\bigcup_{f(V_1,V_2,X)} R_1+R_2\leq \Inf{V_1}{Y_1}+\Inf{V_2}{Y_2}-\Inf{V_1}{V_2}$$
\end{definition}
\begin{definition}[Cooperative Outter Bound]
An outer bound to $\mathcal{C}_{BC}\subset\mathcal{C}_{CSB}$ given by assuming receivers can cooperate perfectly. In that case, achieving the cut-set bound $R_1+R_2\leq \Inf{\y_1,\y_2}{\x}$ would be easy using single-user MIMO.
\end{definition}
\begin{remark}
For arbitrary non-degraded BC channels $\mathcal{C}_{BC}$ is still an open problem. We only focus on \textbf{Gaussian MIMO}.
\end{remark}
}
\frame[allowframebreaks]{\frametitle{Gaussian MIMO BC Channel}
\begin{figure}
\begin{tikzpicture}[scale=.5]
\draw [->] (.75,0.25) -- (5.25,1.25);
\draw [->] (.75,-0.25) -- (5.25,-1.25);
\node[draw,circle] at (6,1.5) {$y_1$};
\node[draw,circle] at (6,-1.5) {$y_2$};
\node[draw,circle] at (0,0) {$\x$};
\node[anchor=south] at (3.5,.75) {$\h_1^H$};
\node[anchor=north] at (3.5,-.75) {$\h_2^H$};
\end{tikzpicture}
\end{figure}
\begin{itemize}
\item $N_t$ transmit antennas\\ \ \\
\item single-antenna receivers\\ \ \\
\item \textbf{Not a Degraded BC}\\ \ \\
\item But $\mathcal{C}_{BC}$ has been solved (Costa)\\ \ \\
\item The DoF are $\min(K,N_t)$. Moreover, the subset of DoF dedicated to each user $k$ is $\leq1$ because of its single antenna.\\ \ \\
\begin{definition}[Transmit Signatures]
We assume that each user is sent a scalar signal $\tilde{x}_k$ with a ``precoding vector'' $\uu_{k}$
$$\x=\sum_{k}\uu_{k}x_k\textnormal{ where }\Ex{}{|x_k|^2}=P_k$$
\end{definition}
\item Let $\Hb=(\h_1,\dots \h_K)$ and $\U=(\uu_1,\dots \uu_K)$. If $N_t\geq K$ and $\Hb$ is orthogonal we can choose $\uu_k=\h_k/\|\h_k\|^2$ so $$y_k=\Hb^H\U\tilde{\x}+z_k=\tilde{x}_k+z_k$$
\item With independent encoding and decoding (supoptimal) linear precoding results in
$$R_k=\log (1+\gamma_k)\textnormal{ with }\gamma_k=\frac{P_k|\uu_k^H\h_k|^2}{BN_o+\sum_{k'\neq k} P_{k'}|\uu_{k'}^H\h_k|^2}$$
\item We can design the precoders $\uu_k$'s as filters to maximize the SINRs, weighted sum, etc.\\ \ \\
\item Maximum SINR with the MMSE receivers \textbf{of the DMAC}\\ \ \\
\item Linear schemes with superpositon codign are not enough\\ \ \\
\end{itemize}
}
\frame[allowframebreaks]{\frametitle{MAC -- BC duality (MIMO)}
\begin{columns}[T]
\begin{column}{6cm}
$$\y^{BC}=\Hb^H\U\tilde{\x}^{BC}+\z^{BC}$$
\begin{figure}
% \resizebox{\columnwidth}{3cm}{
\begin{tikzpicture}[scale=.7, transform shape, auto, node distance=1cm,>=latex']
\node [input, name=input1] {};
\node [block, right of=input1, node distance=1.5cm] (prec1) {$\uu_1$};
\node [below of=prec1, node distance=1.5cm] (prec2) {$\vdots$};
\node [block, below of=prec2, node distance=1.5cm] (prec3) {$\uu_K$};
\node [input, left of=prec3, name=input3, node distance=1.5cm] {};
\draw [draw,->] (input1) -- node {$\tilde{x}_1$} (prec1);
\draw [draw,->] (input3) -- node {$\tilde{x}_K$} (prec3);
\node [sum, right of=prec2, node distance=1.5cm] (sum) {};
\draw [->] (prec1) -- node[anchor=south,pos=0.99] {$+$} (sum);
\draw [->] (prec3) -- node[anchor=east,pos=0.99] {$+$} (sum);
\node [block, right of=sum, node distance=1.5cm] (chan) {$\Hb^H$};
\draw [->] (sum) -- (chan);
\node [sum, right of=chan, node distance=1.5cm] (sz) {};
\draw [->] (chan) -- (sz);
\node [above of=sz, node distance=1cm] (zz) {$\z$};
\draw [->] (zz) -- node[anchor=west,pos=0.9] {$+$} (sz);
\coordinate [right of=sz, name=sz2] {};
\node [right of=sz2, name=output2] {$\vdots$};
\node [above of=output2, name=output1, node distance=1.5cm] {$y_1$};
\node [below of=output2, name=output3, node distance=1.5cm] {$y_K$};
\draw [->] (sz) -- (sz2) |- (output1);
\draw [->] (sz) -- (sz2) |- (output3);
\end{tikzpicture}
% }
\caption{Gaussian MIMO BC}
\end{figure}
\end{column}
\begin{column}{6cm}
$$\y^{DMAC}=\U^H\Hb\tilde{\x}^{DMAC}+\z^{DMAC}$$
\begin{figure}
\begin{tikzpicture}[scale=.7, transform shape,auto, node distance=1cm,>=latex']
\node [name=input1, node distance=1.5cm] {$x^{DMAC}_{1}$};
\node [below of=input1,name=input2, node distance=1.5cm] {$\vdots$};
\node [below of=input2,name=input3, node distance=1.5cm] {$x^{DMAC}_{K}$};
\node [block, minimum height=2cm, right of=input2, node distance=1.5cm] (chan) {$\Hb$};
\draw [->] (input1) -- node {} (chan);
\draw [->] (input3) -- node {} (chan);
\node [sum, right of=chan, node distance=1.5cm] (sz) {};
\draw [->] (chan) -- (sz);
\node [above of=sz, node distance=1cm] (zz) {$\z^{DMAC}$};
\draw [->] (zz) -- node[anchor=west,pos=0.9] {$+$} (sz);
\coordinate [right of=sz, name=sz2];
\node [right of=sz2, node distance=1.5cm] (prec2) {$\vdots$};
\node [block, above of=prec2, node distance=1.5cm] (prec1) {$\uu_1^H$};
\node [block, below of=prec2, node distance=1.5cm] (prec3) {$\uu_K^H$};
\draw [->] (sz) -- node[anchor=west,pos=0.99] {$\y^{DMAC}$} (sz2) |- (prec1);
\draw [->] (sz) -- (sz2) |- (prec3);
\node [right of=prec2, name=output2] {$\vdots$};
\node [right of=prec1, name=output1, node distance=1.5cm] {$y_1^{DMAC}$};
\node [right of=prec3, name=output3, node distance=1.5cm] {$y_K^{DMAC}$};
\draw [->] (prec1) -- (output1);
\draw [->] (prec3) -- (output3);
\end{tikzpicture}
\caption{Gaussian MIMO DMAC}
\end{figure}
\end{column}
\end{columns}
\begin{itemize}
\item The MIMO DMAC employs the signatures as filters $\uu_1^H\dots\uu_K^H$\\ \ \\
\pagebreak
\item BC SINRs $\gamma_k=\frac{P_k|\uu_k^H\h_k|^2}{BN_o+\sum_{k'\neq k} P_{k'}|\uu_{k'}^H\h_k|^2}$ \\ \ \\
\item Denote vector $\ab$ such that $a_k\triangleq\frac{\gamma_k}{(1+\gamma_k)|\h_{k}^H\uu_k|^2}$\\ \ \\
\item Denote matrix $ \Gb$ such that $G_{k,k'}\triangleq|\uu_{k'}^H\h_{k}|^2$\\ \ \\
\begin{lemma}
All DL SINRs are related by the system of linear equations
$$(\I_K-\Delb_{\ab} \Gb)\vec{P}=N_o\ab \textnormal{ where } \Delb_{\ab}\triangleq\left(\begin{array}{cccc}
a_1&0&\dots&0\\
0&a_2&\dots&0\\
\vdots&\vdots&\ddots&\vdots\\
0&0&\dots&a_K\\
\end{array}\right)$$
\end{lemma}
\pagebreak
\item DMAC power allocations denoted $Q_k$\\ \ \\
\item DMAC SINRs $\gamma_k^{DMAC}=\frac{Q_k|\uu_k^H\h_k|^2}{BN_o+\sum_{k'\neq k} Q_{k'}|\uu_k^H\h_{k'}|^2}$\\ \ \\
\begin{itemize}
\item DMAC ``all the $\h$'s to $\uu_k$'' vs BC ``all the $\uu$'s to $\h_k$''\\ \ \\
\end{itemize}
\item Denote vector $\bb$ such that $b_k\triangleq\frac{\gamma_k^{DMAC}}{(1+\gamma_k^{DMAC})|\h_{k}^H\uu_k|^2}$
\begin{lemma}
All UL SINRs are related by the system of linear equations
$$(\I_K-\Delb_{\bb} \Gb^T)\vec{Q}=N_o\bb$$
\end{lemma}
\pagebreak
\item We can solve for $\vec{P}$ and $\vec{Q}$ respectively ($\Delb_{\bb}^{-1}\bb=\one_K$)
$$\vec{P}=N_o(\Delb_{\ab}^{-1}- \Gb)^{-1}\one_{K}$$
$$\vec{Q}=N_o(\Delb_{\bb}^{-1}- \Gb^T)^{-1}\one_{K}$$
\begin{theorem} The same SINRs can be achieved with the same \textbf{sum of} power
\begin{equation}
\begin{split}
\gamma_k=\gamma_k^{DMAC} \Rightarrow \ab=\bb \Rightarrow
\sum_{k=1}^{K}P_k&=N_o\one_{K}^T(\Delb_{\ab}^{-1}- \Gb)^{-1}\one_{K}\\
&=N_o\one_{K}^T(\Delb_{\bb}^{-1}- \Gb^T)^{-1}\one_{K}\\
&=\sum_{k=1}^{K}Q_k
\end{split}
\end{equation}
\end{theorem}
\pagebreak
\item Assuming $\vec{Q}$ fixed we can find optimal $\uu_k$ \textbf{in DMAC} (MMSE)\\ \ \\
\item Assuming $\uu_k$ fixed we can choose $\vec{Q}$ \textbf{in DMAC} (dual problem)\\ \ \\
\item We can use iterative updates of both (marginal subproblems)
$$\vec{Q}^{(n)}\to\{\uu_k^{(n)}\}_{k=1}^{K}\to \vec{Q}^{(n+1)}$$\\ \ \\
\item Finally we compute $\bb$ using $\vec{Q}$, and $\vec{P}$ using $\ab=\bb$\\ \ \\
\end{itemize}
}
\frame[allowframebreaks]{\frametitle{Non-linear BC Transmitter Schemes}
\begin{itemize}
\item To achieve Gaussian BC $\mathcal{C}$ we need to cancel interference\\ \ \\
\item In SISO, strongest receiver can decode everything (recursive) \\ \ \\
\item In MIMO there is no ``receiver order''\\ \ \\
\item \textbf{Only the BS} knows all transmitted signals: Is there some method equivalent to SIC at the transmitter?\\ \ \\
\end{itemize}
}
\frame[allowframebreaks]{\frametitle{Na\"ive pre-canceller}
\begin{itemize}
\item Suppose an AWGN channel with known interference
$$y=x+w+z$$
\vspace{-.3in}
\begin{itemize}
\item $x$ is the transmitted signal
\item $w$ is \textbf{known} to the transmitter
\item $z$ is the noise\\ \ \\
\end{itemize}
\item If $\Ex{}{|w|^2}<P$ we could send $x=v-w$, where $v$ is the desired signal
\item Then the rate would be
$R_{\textnormal{na\"ive}}=\log_2\left(1+\frac{P-\Ex{}{|w|^2}}{BN_o}\right)$\\ \ \\
\item We could only cancel \textbf{partially} $x=v-\alpha w$ with $\alpha\in[0,1]$
$$R_{\alpha-\textnormal{na\"ive}}=\log_2\left(1+\frac{P-\alpha\Ex{}{|w|^2}}{(1-\alpha)\Ex{}{|w|^2}+BN_o}\right)$$\\ \ \\
\end{itemize}
}
\frame[allowframebreaks]{\frametitle{Dirty Paper Coding}
\begin{Theorem}[Costa'83]
Using Dirty Paper Coding (DPC) a transmitter that knows the interference can achieve rate
$$R_{DPC}=\log_2\left(1+\frac{P}{BN_o}\right)$$
\end{Theorem}
\begin{columns}
\begin{column}{5.5cm}
\begin{itemize}
\item \textcolor{ARust}{Same rate as AWGN case!}\\ \ \\
\item An application of the Gel'fand and Pinsker Channel\\ \ \\
\end{itemize}
\end{column}
\begin{column}{4cm}
\begin{figure}
\centering
\begin{tikzpicture}[scale=.55]
\begin{axis}[
axis lines = left,
xlabel = $\alpha$,
ylabel = {$R$},
ymax=4,
legend style={at={(.95,.53)}}
]
\addplot [thick,
domain=0:1,
samples=100,
color=ARust,
]
{ln(1+10)/ln(2)};
\addlegendentry{$C_{AWGN}$ with $P/BN_o=10$dB}
\addplot [dashed,thick,
domain=0:1,
samples=100,
color=VCobalt,
]
{ln(1+(10-x)/(1+(1-x))/ln(2)};
\addlegendentry{$R_{\alpha-\textnormal{na\"ive}}|w|^2=P/10$}
\addplot [dotted,thick,
domain=0:1,
samples=100,
color=KYJade,
]
{ln(1+(10-10*x)/(1+10*(1-x))/ln(2)};
\addlegendentry{$R_{\alpha-\textnormal{na\"ive}}|w|^2=P$}
\end{axis}
\end{tikzpicture}
\end{figure}
\end{column}
\end{columns}
\pagebreak
\begin{itemize}
\item Let $\textcolor{KYJade}{r}=\textcolor{VCobalt}{x}+\textcolor{ARust}{w}$ denote the \textit{noiseless signal+interference}\\ \ \\
\item The na\"ive scheme spends power going \textit{against} interference
\begin{figure}
\begin{tikzpicture}[scale=.8]
\draw[dotted,gray,<->] (-2,0) -- (2,0);
\fill[KYJade] (-1,0) circle (.1);
\node[regular polygon,regular polygon sides=3, inner sep=1.3,minimum size=.1, fill=KYJade] at (1,0) {};
\draw[black] (0,.1) -- (0,-.1);
\node[anchor=north] at (0,0) {$0$};
\node[color=KYJade,anchor=north] at (-1,0) {$r_{_{-1}}$};
\node[color=KYJade,anchor=north] at (1,0) {$r_{_{+1}}$};
% \draw (1.4,-0.1) rectangle (1.6,0.1);
\fill[ARust] (1.4,-0.1) rectangle (1.6,0.1);
\node[color=ARust,anchor=north] at (1.5,0) {$w$};
\draw [color=VCobalt,->] (1.5,.1) to [out=150,in=30] node[anchor=south] {$x_{_{-1}}$} (-1,.1);
\draw [color=VCobalt,->] (1.5,.1) to [out=135,in=45] node[anchor=east] {$x_{_{+1}}$} (1,.1);
\end{tikzpicture}
% \caption{BPSK $r$ in the na\"ive scheme}
\end{figure}
\item Define \textit{lattice} $\Lambda_{BPSK}=\bigcup_{d=-\infty}^{\infty}\{\textnormal{BPSK}-4d\}$
\begin{itemize}
\item Infinite copies of \textnormal{BPSK} constellation along real line.
\end{itemize}
\begin{figure}
\begin{tikzpicture}[scale=.7]
\draw[dotted,gray,<->] (-5.5,0) -- (5.5,0);
\foreach \x in {-1,0,...,1} {
\fill[KYJade] (4*\x-1,0) circle (.1);
% \fill[KYJade] (4*\x+1,0) circle (.1);
\node[regular polygon,regular polygon sides=3, inner sep=1.3,minimum size=.1, fill=KYJade] at (4*\x+1,0) {};
\node[color=KYJade,anchor=north] at (4*\x-1,0) {$r_{_{-1}}$};
\node[color=KYJade,anchor=north] at (4*\x+1,0) {$r_{_{+1}}$};
}
\draw[black] (0,.1) -- (0,-.1);
\node[anchor=north] at (0,0) {$0$};
\fill[ARust] (1.4,-0.1) rectangle (1.6,0.1);
\node[color=ARust,anchor=north] at (1.5,0) {$w$};
\draw [color=VCobalt,->] (1.5,.1) to [out=45,in=135] node[anchor=south] {$x_{_{-1}}$} (3 ,.1);
\draw [color=VCobalt,->] (1.5,.1) to [out=135,in=45] node[anchor=south] {$x_{_{+1}}$} (1,.1);
\end{tikzpicture}
\caption{Tomlinson-Harashima BPSK scheme}
\end{figure}
\pagebreak
\item DPC chooses $x$ \textit{in the same direction of $w$, not against it}
$$\forall w\in \mathbb{R}\; \Ex{}{|x|^2}=\Ex{}{|r_{_{\textnormal{DPC}}}-w|^2}=1=\Ex{}{BPSK}$$\\ \ \\
\item Nested lattice Decoding
\begin{itemize}
\item $\Lambda_{BPSK}$ is a union of sublattices
$$\textcolor{ARust}{\Lambda_{+1}=\bigcup_{d=-\infty}^{\infty}\{1-4d\}}\textnormal{ and }\textcolor{VCobalt}{\Lambda_{-1}=\bigcup_{d=-\infty}^{\infty}\{-1-4d\}}$$
\item Identify noiseless symbol $\displaystyle\hat{r}=\arg\min_{\Lambda_{const}=\bigcup \Lambda_{n}} \|y-r\|^2$\\ \ \\
\item Identify the sublattice $\hat{n}=\textnormal{find}\{n : \hat{r}\in \Lambda_{n}\} $
\\ \ \\
\end{itemize}
\begin{figure}
\begin{tikzpicture}[scale=.9]
\draw[dotted,gray,<->] (-5.5,0) -- (5.5,0);
\foreach \x in {-1,0,...,1} {
\fill[VCobalt] (4*\x-1,0) circle (.1);
\node[regular polygon,regular polygon sides=3, inner sep=1.3,minimum size=.1, fill=ARust] at (4*\x+1,0) {};
\node[color=VCobalt,anchor=north] at (4*\x-1,0) {$v_{_{-1}}$};
\node[color=ARust,anchor=north] at (4*\x+1,0) {$v_{_{+1}}$};
}
\end{tikzpicture}
\end{figure}
\pagebreak
\begin{figure}
\begin{tikzpicture}[scale=.5]
\tikzset{mark options={mark size=3}}
\begin{axis}[
axis x line=center,
axis y line=center,
xmin=-1,xmax=1,
ymin=-1, ymax=1,
xtick={-1,...,1},
xticklabels={,,},
ytick={-1,...,1},
yticklabels={,,},
scatter/classes={%
a={mark=*,color=VCobalt},
b={mark=triangle*,color=ARust},
c={mark=square*,color=KYJade},
d={mark=diamond*,color=TAMustard}}]
\addplot[scatter,only marks,%
scatter src=explicit symbolic]%
table[meta=label]{
x y label
0.6424 0.5605 a
-0.9692 -0.8377 a
-0.9140 0.8588 a
-0.6620 0.5514 a
0.2982 -0.0264 a
0.4634 -0.1283 a
0.2955 -0.1064 a
-0.0982 -0.3873 a
0.0940 0.0170 b
-0.4074 0.0215 b
0.4894 0.6353 b
-0.6221 0.5897 b
0.3736 0.2886 b
-0.6330 -0.2428 b
-0.2630 0.6232 b
0.2512 0.0657 b
-0.2985 -0.3778 c
0.8780 0.8468 c
0.7519 -0.1396 c
0.1003 -0.6304 c
0.2450 0.8098 c
0.1741 0.9595 c
-0.5845 -0.1223 c
-0.3975 -0.7778 c
-0.0582 -0.4839 d
-0.5390 -0.1826 d
0.6886 0.1898 d
-0.6105 -0.4756 d
-0.5482 0.2057 d
-0.6586 0.4224 d
-0.5447 -0.5565 d
-0.1286 -0.7652 d
};
\addplot[scatter,only marks,%
scatter src=explicit symbolic,%
mark=pentagon*,color=black]%
coordinates {(.2,.6)
};
\node (destination) at (axis cs:0.4894,0.6353){};
\draw [color=black,->] (axis cs:.2,.6){} to [out=-45,in=-135] node[anchor=north] {$x_{_{1}}$} (destination);
\end{axis}
\end{tikzpicture}
\end{figure}
\item General DPC proof by Costa
\begin{itemize}
\item $N_Q$ random quantizers $\mathscr{Q}_{n}()$ in $\mathbb{C}^{N}$
\item \textcolor{ARust}{Encoder $\x_{n}=\mathscr{Q}_{n}(\w)-\alpha\w$}, $\Ex{}{\|\x\|^2}\leq P$ $\Rightarrow$ $2^{\Inf{\rr}{\w}}$ points
\item Union quantizer $\displaystyle \mathscr{Q}_{tot}()=\bigcup_{n=1}^{2^R} \mathscr{Q}_{n}()$
\item Reliable detection against noise $\hat{\rr}=\mathscr{Q}_{tot}(\y)$ with $2^{\Inf{\y}{\rr}}$ points
\begin{equation}
\begin{split}
R&=\log_2 N_Q=\log_2\frac{2^{\Inf{\y}{\rr}}}{2^{\Inf{\rr}{\w}}}=\Inf{\y}{\rr}-\Inf{\rr}{\w}
\end{split}
\end{equation}
\end{itemize}
\pagebreak
\item Distortion Compensation $\x_{n}=\mathscr{Q}_{n}(\w)-\underset{\textnormal{DC}}{\underbrace{\alpha\w}}$
\begin{itemize}
\item Costa simplifies '$\displaystyle \max_{f(\rr,\x)}$ of GPC' to linear $\rr=\mathscr{Q}_{n}(\w)+(1-\alpha)\w$\\ \ \\
\item Optimal $\alpha^*=\frac{P}{P+\sigma_z^2}$ (Not full cancelling!)\\ \ \\
\end{itemize}
\item Quantization Index Modulation (QIM) [Chen \& Wornell'98]
\end{itemize}
\begin{columns}[T]
\begin{column}{6cm}
\begin{figure}
\centering
\includegraphics[width=.6\columnwidth]{lattice}
\end{figure}
\end{column}
\begin{column}{6cm}
\begin{itemize}
\item a.k.a. Dither Modulation (DM) \\ \ \\
\item Regular Nested Lattices in $\mathbb{C}^{N}$
$$\Lambda_n=\Lambda_0+\mathbf{d}_n \forall n\in\{0,2^{R}\}$$
\item DC in practice too
\end{itemize}
\end{column}
\end{columns}
}
\frame[allowframebreaks]{\frametitle{\small Achieving Gaussian MIMO BC Capacity (DPC+Duality)}
\begin{itemize}
\item For decoding order $\pi(1),\pi(2),\dots,\pi(K)=1\dots K$\\ \ \\
\item Write the signal received by user $k$ as
$$y_k=\h_k^H\uu_k\tilde{x}_k+\underset{\textnormal{DPC}}{\underbrace{\sum_{k'=1}^{k-1}\h_k^H\uu_{k'}\tilde{x}_{k'}}}+\underset{\textnormal{DMAC equations}}{\underbrace{\sum_{k'=k+1}^{K}\h_k^H\uu_k\tilde{x}_k}}$$
\begin{itemize}
\item $\gamma_k=\frac{P_k|\uu_k^H\h_k|^2}{BN_o+\sum_{\textcolor{ARust}{k'> k}} P_{k'}|\uu_{k'}^H\h_k|^2}$
\item $\gamma_k^{DMAC}=\frac{P_k|\uu_k^H\h_k|^2}{BN_o+\sum_{\textcolor{ARust}{k'< k}} P_{k'}|\uu_k^H\h_{k'}|^2}$
\item $\{\uu_k\}_{k=1}^{K}\rightleftharpoons \vec{Q}\to \ab=\bb\to\vec{P}$
\end{itemize}
% \pagebreak
% \item Receive Beamforming (MMSE) + SIC receiver achieves $\mathcal{C}_{MAC}$\\ \ \\
% \item Transmit Beamforming + DPC transmitter achieves $\mathcal{C}_{BC}$\\ \ \\
% \item For MIMO, $\mathcal{C}_{BC}$ cannot be achieved with superposition coding\\ \ \\
\end{itemize}
}
% \frame[allowframebreaks]{\frametitle{}
%
% Consider the DMAC of a MIMO BC using linear filters $\uu_i$ and DPC. The decoding order is 1, 2, 3 ...
% \begin{itemize}
% \item The BC SINR is \(\gamma_i=\) \\ \ \\
% \item The DMAC SINR is \(\gamma_i^{DMAC}=\) \\ \ \\
% \end{itemize}
%
% \(\frac{|\mathbf{u}_i^H\mathbf{h}_i|P_i}{\sigma^2_z+\sum_{k'\neq i}|\mathbf{u}_{k'}^H\mathbf{h}_i|P_{k'}}\)
%
% \(\frac{|\mathbf{u}_i^H\mathbf{h}_i|P_i}{\sigma^2_z+\sum_{k'\neq i}|\mathbf{u}_i^H\mathbf{h}_{k'}|P_{k'}}\)
%
% \(\frac{|\mathbf{u}_i^H\mathbf{h}_i|P_i}{\sigma^2_z+\sum_{j= i+1}^{N}|\mathbf{u}_{k'}^H\mathbf{h}_i|P_{k'}}\)
%
% \(\frac{|\mathbf{u}_i^H\mathbf{h}_i|P_i}{\sigma^2_z+\sum_{j= 1}^{i-1}|\mathbf{u}_i^H\mathbf{h}_{k'}|P_{k'}}\)
% }
\end{document}