-
Notifications
You must be signed in to change notification settings - Fork 58
/
model_test.py
339 lines (283 loc) · 11.9 KB
/
model_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
# Copyright 2018 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Tests for ml_leo.model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
from absl.testing import parameterized
import mock
import numpy as np
from six.moves import zip
import sonnet as snt
import tensorflow as tf
import data
import model
# Adding float64 and 32 gives an error in TensorFlow.
constant_float64 = lambda x: tf.constant(x, dtype=tf.float64)
def get_test_config():
"""Returns the config used to initialize LEO model."""
config = {}
config["inner_unroll_length"] = 3
config["finetuning_unroll_length"] = 4
config["inner_lr_init"] = 0.1
config["finetuning_lr_init"] = 0.2
config["num_latents"] = 1
config["dropout_rate"] = 0.3
config["kl_weight"] = 0.01
config["encoder_penalty_weight"] = 0.01
config["l2_penalty_weight"] = 0.01
config["orthogonality_penalty_weight"] = 0.01
return config
def mockify_everything(test_function=None,
mock_finetuning=True,
mock_encdec=True):
"""Mockifies most of the LEO"s model functions to behave as identity."""
def inner_decorator(f):
@functools.wraps(f)
def mockified(*args, **kwargs):
identity_mapping = lambda unused_self, inp, *args: tf.identity(inp)
mock_encoder = mock.patch.object(
model.LEO, "encoder", new=identity_mapping)
mock_relation_network = mock.patch.object(
model.LEO, "relation_network", new=identity_mapping)
mock_decoder = mock.patch.object(
model.LEO, "decoder", new=identity_mapping)
mock_average = mock.patch.object(
model.LEO, "average_codes_per_class", new=identity_mapping)
mock_loss = mock.patch.object(model.LEO, "loss_fn", new=identity_mapping)
float64_zero = constant_float64(0.)
def identity_sample_fn(unused_self, inp, *unused_args, **unused_kwargs):
return inp, float64_zero
def mock_sample_with_split(unused_self, inp, *unused_args,
**unused_kwargs):
out = tf.split(inp, 2, axis=-1)[0]
return out, float64_zero
# When not mocking relation net, it will double the latents.
mock_sample = mock.patch.object(
model.LEO,
"possibly_sample",
new=identity_sample_fn if mock_encdec else mock_sample_with_split)
def dummy_predict(unused_self, inputs, classifier_weights):
return inputs * classifier_weights**2
mock_predict = mock.patch.object(model.LEO, "predict", new=dummy_predict)
mock_decoder_regularizer = mock.patch.object(
model.LEO, "_decoder_orthogonality_reg", new=float64_zero)
all_mocks = [mock_average, mock_loss, mock_predict, mock_sample]
if mock_encdec:
all_mocks.extend([
mock_encoder,
mock_relation_network,
mock_decoder,
mock_decoder_regularizer,
])
if mock_finetuning:
mock_finetuning_inner = mock.patch.object(
model.LEO,
"finetuning_inner_loop",
new=lambda unused_self, d, l, adapted: (adapted, float64_zero))
all_mocks.append(mock_finetuning_inner)
for m in all_mocks:
m.start()
f(*args, **kwargs)
for m in all_mocks:
m.stop()
return mockified
if test_function:
# Decorator called with no arguments, so the function is passed
return inner_decorator(test_function)
return inner_decorator
def _random_problem_instance(num_classes=7,
num_examples_per_class=5,
embedding_dim=17, use_64bits_dtype=True):
inputs_dtype = tf.float64 if use_64bits_dtype else tf.float32
inputs = tf.constant(
np.random.random((num_classes, num_examples_per_class, embedding_dim)),
dtype=inputs_dtype)
outputs_dtype = tf.int64 if use_64bits_dtype else tf.int32
outputs = tf.constant(
np.random.randint(
low=0,
high=num_classes,
size=(num_classes, num_examples_per_class, 1)), dtype=outputs_dtype)
problem = data.ProblemInstance(
tr_input=inputs,
val_input=inputs,
tr_info=inputs,
tr_output=outputs,
val_output=outputs,
val_info=inputs)
return problem
class LEOTest(tf.test.TestCase, parameterized.TestCase):
def setUp(self):
super(LEOTest, self).setUp()
self._problem = _random_problem_instance(5, 7, 4)
# This doesn"t call any function, so doesn't need the mocks to be started.
self._config = get_test_config()
self._leo = model.LEO(config=self._config)
self.addCleanup(mock.patch.stopall)
@mockify_everything
def test_instantiate_leo(self):
encoder_output = self._leo.encoder(5, 7)
with self.session() as sess:
encoder_output_ev = sess.run(encoder_output)
self.assertEqual(encoder_output_ev, 5)
@mockify_everything
def test_inner_loop_adaptation(self):
problem_instance = data.ProblemInstance(
tr_input=constant_float64([[[4.]]]),
tr_output=tf.constant([[[0]]], dtype=tf.int64),
tr_info=[],
val_input=[],
val_output=[],
val_info=[],
)
# encoder = decoder = id
# predict returns classifier_weights**2 * inputs = latents**2 * inputs
# loss = id = inputs*latents
# dl/dlatent = 2 * latent * inputs
# 4 -> 4 - 0.1 * 2 * 4 * 4 = 0.8
# 0.8 -> 0.8 - 0.1 * 2 * 0.8 * 4 = 0.16
# 0.16 -> 0.16 - 0.1 * 2 * 0.16 * 4 = 0.032
# is_meta_training=False disables kl and encoder penalties
adapted_parameters, _ = self._leo(problem_instance, is_meta_training=False)
with self.session() as sess:
sess.run(tf.global_variables_initializer())
self.assertAllClose(sess.run(adapted_parameters), 0.032)
@mockify_everything
def test_map_input(self):
problem = [
constant_float64([[[5.]]]), # tr_input
tf.constant([[[0]]], dtype=tf.int64), # tr_output
constant_float64([[[0]]]), # tr_info
constant_float64([[[0.]]]), # val_input
tf.constant([[[0]]], dtype=tf.int64), # val_output
constant_float64([[[0]]]), # val_info
]
another_problem = [
constant_float64([[[4.]]]),
tf.constant([[[0]]], dtype=tf.int64),
constant_float64([[[0]]]),
constant_float64([[[0.]]]),
tf.constant([[[0]]], dtype=tf.int64),
constant_float64([[[0]]]),
]
# first dimension (list): diffent input kind (tr_input, val_output, etc.)
# second dim: different problems; this has to be a tensor dim for map_fn
# to split over it.
# next three: (1, 1, 1)
# map_fn cannot receive structured inputs (namedtuples).
ins = [
tf.stack([in1, in2])
for in1, in2 in zip(problem, another_problem)
]
two_adapted_params, _ = tf.map_fn(
self._leo.__call__, ins, dtype=(tf.float64, tf.float64))
with self.session() as sess:
sess.run(tf.global_variables_initializer())
output1, output2 = sess.run(two_adapted_params)
self.assertGreater(abs(output1 - output2), 1e-3)
@mockify_everything
def test_setting_is_meta_training(self):
self._leo(self._problem, is_meta_training=True)
self.assertTrue(self._leo.is_meta_training)
self._leo(self._problem, is_meta_training=False)
self.assertFalse(self._leo.is_meta_training)
@mockify_everything(mock_finetuning=False)
def test_finetuning_improves_loss(self):
# Create graph
self._leo(self._problem)
latents, _ = self._leo.forward_encoder(self._problem)
leo_loss, adapted_classifier_weights, _ = self._leo.leo_inner_loop(
self._problem, latents)
leo_loss = tf.reduce_mean(leo_loss)
finetuning_loss, _ = self._leo.finetuning_inner_loop(
self._problem, leo_loss, adapted_classifier_weights)
finetuning_loss = tf.reduce_mean(finetuning_loss)
with self.session() as sess:
sess.run(tf.global_variables_initializer())
leo_loss_ev, finetuning_loss_ev = sess.run([leo_loss, finetuning_loss])
self.assertGreater(leo_loss_ev - 1e-3, finetuning_loss_ev)
@mockify_everything
def test_gradients_dont_flow_through_input(self):
# Create graph
self._leo(self._problem)
latents, _ = self._leo.forward_encoder(self._problem)
grads = tf.gradients(self._problem.tr_input, latents)
self.assertIsNone(grads[0])
@mockify_everything
def test_inferring_embedding_dim(self):
self._leo(self._problem)
self.assertEqual(self._leo.embedding_dim, 4)
@mockify_everything(mock_encdec=False, mock_finetuning=False)
def test_variable_creation(self):
self._leo(self._problem)
encoder_variables = snt.get_variables_in_scope("leo/encoder")
self.assertNotEmpty(encoder_variables)
relation_network_variables = snt.get_variables_in_scope(
"leo/relation_network")
self.assertNotEmpty(relation_network_variables)
decoder_variables = snt.get_variables_in_scope("leo/decoder")
self.assertNotEmpty(decoder_variables)
inner_lr = snt.get_variables_in_scope("leo/leo_inner")
self.assertNotEmpty(inner_lr)
finetuning_lr = snt.get_variables_in_scope("leo/finetuning")
self.assertNotEmpty(finetuning_lr)
self.assertSameElements(
encoder_variables + relation_network_variables + decoder_variables +
inner_lr + finetuning_lr, self._leo.trainable_variables)
def test_graph_construction(self):
self._leo(self._problem)
def test_possibly_sample(self):
# Embedding dimension has to be divisible by 2 here.
self._leo(self._problem, is_meta_training=True)
train_samples, train_kl = self._leo.possibly_sample(self._problem.tr_input)
self._leo(self._problem, is_meta_training=False)
test_samples, test_kl = self._leo.possibly_sample(self._problem.tr_input)
with self.session() as sess:
train_samples_ev1, test_samples_ev1 = sess.run(
[train_samples, test_samples])
train_samples_ev2, test_samples_ev2 = sess.run(
[train_samples, test_samples])
self.assertAllClose(test_samples_ev1, test_samples_ev2)
self.assertGreater(abs(np.sum(train_samples_ev1 - train_samples_ev2)), 1.)
train_kl_ev, test_kl_ev = sess.run([train_kl, test_kl])
self.assertNotEqual(train_kl_ev, 0.)
self.assertEqual(test_kl_ev, 0.)
def test_different_shapes(self):
problem_instance2 = _random_problem_instance(5, 6, 13)
self._leo(self._problem)
with self.assertRaises(AssertionError):
self._leo(problem_instance2)
def test_encoder_penalty(self):
self._leo(self._problem) # Sets is_meta_training
latents, _ = self._leo.forward_encoder(self._problem)
_, _, train_encoder_penalty = self._leo.leo_inner_loop(
self._problem, latents)
self._leo(self._problem, is_meta_training=False)
_, _, test_encoder_penalty = self._leo.leo_inner_loop(
self._problem, latents)
with self.session() as sess:
sess.run(tf.initializers.global_variables())
train_encoder_penalty_ev, test_encoder_penalty_ev = sess.run(
[train_encoder_penalty, test_encoder_penalty])
self.assertGreater(train_encoder_penalty_ev, 1e-3)
self.assertLess(test_encoder_penalty_ev, 1e-7)
def test_construct_float32_leo_graph(self):
leo = model.LEO(use_64bits_dtype=False, config=self._config)
problem_instance_32_bits = _random_problem_instance(use_64bits_dtype=False)
leo(problem_instance_32_bits)
if __name__ == "__main__":
tf.test.main()