-
Notifications
You must be signed in to change notification settings - Fork 43
/
train_continual.py
1003 lines (901 loc) · 40 KB
/
train_continual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# coding=utf-8
# Copyright 2020 The Learning-to-Prompt Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific Learning-to-Prompt governing permissions and
# limitations under the License.
# ==============================================================================
"""Main framework for continual learning."""
import functools
import os
import sys
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union
from absl import logging
from clu import checkpoint
from clu import metric_writers
from clu import metrics
from clu import parameter_overview
from clu import periodic_actions
import flax
import flax.jax_utils as flax_utils
import flax.linen as nn
import jax
import jax.numpy as jnp
import ml_collections
import numpy as np
from libml import input_pipeline
from libml import losses
from libml import utils
from libml import utils_vit
from libml.continual_buffer import ReplayBuffer
from libml.eval_metrics import EvalMetrics_list
from models import resnet_v1
from models import vit
import tensorflow as tf
# global variable for maintaining summary steps
summary_step = 0
@flax.struct.dataclass
class TrainState:
step: int
optimizer: flax.optim.Optimizer
model_state: Any
def create_optimizer(config: ml_collections.ConfigDict, params: Any):
"""Optionally creates the optimizer to use for every task.
Args:
config: Configuration to use.
params: Parameters associated with the optimizer.
Returns:
The newly created optimizer.
"""
if config.optim in ("adamw", "adam"):
if config.get("optim_wd_ignore"):
# Allow zero weight decay for certain parameters listed in optim_wd_ignore
igns = config.optim_wd_ignore
p = flax.optim.ModelParamTraversal(
lambda path, _: not any([i in path for i in igns]))
p_nowd = flax.optim.ModelParamTraversal(
lambda path, _: any([i in path for i in igns]))
p_opt = flax.optim.Adam(weight_decay=config.weight_decay)
p_nowd_opt = flax.optim.Adam(weight_decay=0)
opt_def = flax.optim.MultiOptimizer((p, p_opt), (p_nowd, p_nowd_opt))
else:
opt_def = flax.optim.Adam(weight_decay=config.weight_decay)
elif config.optim == "sgd":
opt_def = flax.optim.Momentum(beta=config.sgd_momentum, nesterov=True)
else:
raise NotImplementedError(f"{config.optim} does not exist.")
if (not config.get("freeze_part")) or config.get("optim_wd_ignore"):
optimizer = opt_def.create(params)
else:
# freeze part of the parameters according to specification
freeze_part = config.freeze_part
p_normal = flax.optim.ModelParamTraversal(
lambda path, _: not any([i in path for i in freeze_part]))
p_freeze = flax.optim.ModelParamTraversal(
lambda path, _: any([i in path for i in freeze_part]))
if config.optim == "adam":
p_normal_opt = flax.optim.Adam(weight_decay=config.weight_decay)
p_freeze_opt = flax.optim.Adam(weight_decay=0)
elif config.optim == "sgd":
p_normal_opt = flax.optim.Momentum(
beta=config.sgd_momentum, nesterov=True)
p_freeze_opt = flax.optim.Momentum(beta=0, nesterov=False)
opt_def = flax.optim.MultiOptimizer((p_normal, p_normal_opt),
(p_freeze, p_freeze_opt))
optimizer = opt_def.create(params)
return optimizer
def create_train_state(config: ml_collections.ConfigDict, rng: np.ndarray,
input_shape: Sequence[int],
num_classes: int) -> Tuple[Any, TrainState]:
"""Creates and initializes the model.
Args:
config: Configuration for model.
rng: JAX PRNG Key.
input_shape: Shape of the inputs fed into the model.
num_classes: Number of classes in the output layer.
Returns:
The initialized TrainState with the optimizer.
"""
# Create model function.
if config.model_name.startswith("resnet"):
model_cls = resnet_v1.create_model(config.model_name, config)
elif config.model_name.startswith("ViT"):
model_cls, model_config = vit.create_model(config.model_name, config)
config.model_config = model_config
else:
raise ValueError(f"Model {config.model_name} not supported.")
model = functools.partial(model_cls, num_classes=num_classes)
variables = model(train=False).init(rng, jnp.ones(input_shape))
model_state = dict(variables)
params = model_state.pop("params")
parameter_overview.log_parameter_overview(params)
if config.get("log_model_profile"): # Be True or [1, 2]
message_1 = utils.log_throughput(model, variables, input_shape)
message_2 = utils.compute_flops(model, variables,
[1] + list(input_shape[1:]))
count = parameter_overview.count_parameters(params)
message_3 = "Params: {:,}".format(count)
message = ", ".join([message_1, message_2, message_3])
logging.info("Profile results %s", message)
if (isinstance(config.log_model_profile, (int,)) and
config.log_model_profile >= 2):
sys.exit(0)
optimizer = create_optimizer(config, params)
return model, TrainState(step=0, optimizer=optimizer, model_state=model_state)
@flax.struct.dataclass
class EvalMetrics(metrics.Collection):
accuracy: metrics.Accuracy
eval_loss: metrics.Average.from_output("loss")
@flax.struct.dataclass
class TrainMetrics(metrics.Collection):
train_accuracy: metrics.Accuracy
learning_rate: metrics.LastValue.from_output("learning_rate")
loss: metrics.Average.from_output("loss")
loss_std: metrics.Std.from_output("loss")
l2_grads: metrics.Average.from_output("l2_grads")
def train_step(
model: Any,
state: TrainState,
batch: Dict[str, jnp.ndarray],
rng: np.ndarray,
learning_rate_fn: Callable[[int], float],
weight_decay: float,
grad_clip_max_norm: Optional[float] = None,
initial_step: int = -1,
freeze: bool = False,
freeze_bn_stats: bool = False,
num_total_class: int = -1,
train_mask: bool = False,
class_mask=None,
cur_task_id: int = -1,
use_prompt_mask=False,
original_vit_model=None, # 9.6: added for cls feature
original_vit_params=None, # 9.6: added for cls feature
config=None
) -> Tuple[TrainState, metrics.Collection]:
"""Performs a single training step.
Args:
model: Flax module for the model. The apply method must take input images
and a boolean argument indicating whether to use training or inference
mode.
state: State of the model (optimizer and state).
batch: Training inputs for this step.
rng: Random seed.
learning_rate_fn: Function that computes the learning rate given the step
number.
weight_decay: Weighs L2 regularization term.
grad_clip_max_norm: Gradient norm max value. Default to be None.
initial_step: Initial step number of current task. Used for calculating the
relateive step in the current task.
freeze: If freeze part of the model parameters according to
config.freeze_parts.
freeze_bn_stats: If freeze parameters of BatchNorm layers (if have).
num_total_class: Total number of classes for all tasks.
train_mask: If using the class mask at training.
class_mask: 0-1 vectors, for blocking out gradients of classes from
non-current tasks.
cur_task_id: ID of the current tasks, starting from 0.
use_prompt_mask: If mask the prompts at training time, equivalent to
diversifying penalty.
original_vit_model: Original vit model definition. Use for calculating cls
token feature used as key in prompt selection.
original_vit_params: Pretrained vit model weights. Use for calculating cls
token feature used as key in prompt selection.
config: Configuration for model.
Returns:
The new model state and dictionary with metrics.
"""
logging.info("train_step(batch=%s)", batch)
step = state.step + 1
if initial_step > 0:
lr = learning_rate_fn(step - initial_step + 1)
else:
lr = learning_rate_fn(step)
# Convert one-hot labels to single values if appliable.
u_labels = (
jnp.argmax(batch["label"], 1)
if len(batch["label"].shape) > 1 else batch["label"])
def loss_fn(params):
variables = {"params": params}
# save here for later replacement
old_model_state = state.model_state
variables.update(state.model_state)
if use_prompt_mask:
start = cur_task_id * config.prompt_pool_param.top_k
end = (cur_task_id + 1) * config.prompt_pool_param.top_k
single_prompt_mask = jnp.arange(start, end)
single_prompt_mask = single_prompt_mask[jnp.newaxis, :]
prompt_mask = jnp.repeat(
single_prompt_mask, batch["image"].shape[0], axis=0)
if end > config.prompt_pool_param.pool_size:
prompt_mask = None
else:
prompt_mask = None
# calculating cls feature
if original_vit_model is not None:
original_vit_variables = {
"params": original_vit_params,
}
original_vit_res = original_vit_model(train=False).apply(
original_vit_variables, batch["image"], mutable=False)
cls_features = original_vit_res["pre_logits"]
else:
cls_features = None
task_id = cur_task_id
res, new_model_state = model(train=True).apply(
variables,
batch["image"],
prompt_mask,
task_id,
cls_features,
batch["label"],
mutable=["batch_stats"],
rngs={"dropout": rng})
logits = res["logits"]
# here is the trick to mask out classes of non-current tasks
if train_mask:
not_mask = np.setdiff1d(np.arange(num_total_class), class_mask)
if config.continual.get("replay_no_mask"):
# dev, bs, #class, where dev is implicit here
logits = jax.ops.index_update(
logits, jax.ops.index[:config.per_device_batch_size, not_mask],
-jnp.inf)
if config.continual.get("replay_reverse_mask"):
logits = logits.at[config.per_device_batch_size:,
class_mask].set(-jnp.inf)
else:
logits = logits.at[..., not_mask].set(-jnp.inf)
# end of trick
loss = jnp.mean(
losses.softmax_cross_entropy_loss(logits=logits, labels=batch["label"]))
if weight_decay > 0:
weight_penalty_params = jax.tree_leaves(variables["params"])
weight_l2 = sum(
[jnp.sum(x**2) for x in weight_penalty_params if x.ndim > 1])
weight_penalty = weight_decay * 0.5 * weight_l2
loss = loss + weight_penalty
if config.get("pull_constraint"):
loss = loss - config.pull_constraint_coeff * res["reduce_sim"]
new_model_state = dict(new_model_state)
if freeze_bn_stats:
new_model_state = old_model_state
return loss, (new_model_state, logits)
grad_fn = jax.value_and_grad(loss_fn, has_aux=True)
(loss, (new_model_state, logits)), grad = grad_fn(state.optimizer.target)
# Compute average gradient across multiple workers.
grad = jax.lax.pmean(grad, axis_name="batch")
# Compute l2 grad always for training debugging.
grads, _ = jax.tree_flatten(grad)
l2_g = jnp.sqrt(sum([jnp.vdot(p, p) for p in grads]))
if grad_clip_max_norm:
g_factor = jnp.minimum(1.0, grad_clip_max_norm / (l2_g + 1e-6))
grad = jax.tree_map(lambda p: g_factor * p, grad)
if freeze:
hparams = state.optimizer.optimizer_def.hyper_params
new_optimizer = state.optimizer.apply_gradient(
grad,
hyper_params=[
hparams[0].replace(learning_rate=lr),
hparams[1].replace(learning_rate=0),
])
else:
new_optimizer = state.optimizer.apply_gradient(grad, learning_rate=lr)
new_state = state.replace( # pytype: disable=attribute-error
step=step,
optimizer=new_optimizer,
model_state=new_model_state)
metrics_update = TrainMetrics.gather_from_model_output(
loss=loss,
logits=logits,
labels=u_labels,
learning_rate=lr,
l2_grads=l2_g)
return new_state, metrics_update
def eval_step(model: Any,
state: TrainState,
batch: Dict[str, jnp.ndarray],
task_id: int = -1,
task_inc: bool = False,
class_mask=None,
return_prompt_id=False,
original_vit_model=None,
original_vit_params=None) -> metrics.Collection:
"""Computes the metrics for the given model in inference mode.
The model is applied to the inputs with train=False using all devices on the
host. Afterwards metrics are averaged across *all* devices (of all hosts).
Args:
model: Flax module for the model. The apply method must take input images
and a boolean argument indicating whether to use training or inference
mode.
state: Replicate model state.
batch: Inputs that should be evaluated.
task_id: Current task to be evaluated.
task_inc: Specify if doing task incremental, if so, adding corresponding
mask.
class_mask: 0-1 vectors, for blocking out gradients of classes from
non-current tasks.
return_prompt_id: If return selected prompt ids for each example, used for
plotting the prompt selection histrogram.
original_vit_model: Original vit model definition. Use for calculating cls
token feature used as key in prompt selection.
original_vit_params: Pretrained vit model weights. Use for calculating cls
token feature used as key in prompt selection.
Returns:
Dictionary of the replicated metrics, and optionally the selected prompt
ids, if return_prompt_id is specified as True
"""
if original_vit_model is not None:
original_vit_variables = {
"params": original_vit_params,
}
original_vit_res = original_vit_model(train=False).apply(
original_vit_variables, batch["image"], mutable=False)
cls_features = original_vit_res["pre_logits"]
else:
cls_features = None
logging.info("eval_step(batch=%s)", batch)
variables = {
"params": state.optimizer.target,
}
variables.update(state.model_state)
res = model(train=False).apply(
variables, batch["image"], cls_features=cls_features, mutable=False)
logits = res["logits"]
if task_inc:
# adding mask to output logits
logits_mask = jnp.ones_like(logits) * (-jnp.inf)
logits_mask = logits_mask.at[..., class_mask].set(0)
logits = logits + logits_mask
loss = jnp.mean(
losses.cross_entropy_loss(logits=logits, labels=batch["label"]))
if task_id < 0:
return EvalMetrics.gather_from_model_output(
logits=logits,
labels=batch["label"],
loss=loss,
mask=batch.get("mask"),
)
else:
metrics_update = EvalMetrics_list[task_id].gather_from_model_output(
logits=logits,
labels=batch["label"],
loss=loss,
mask=batch.get("mask"),
)
if return_prompt_id:
return metrics_update, res["prompt_idx"]
else:
return metrics_update
def evaluate_tasks_till_now(cur_task_id: int,
model: nn.Module,
state: TrainState,
eval_ds_list: List[tf.data.Dataset],
class_mask_list: Any,
num_eval_steps: int = -1,
task_inc: bool = False,
return_prompt_id: bool = False,
original_vit_model=None,
original_vit_params=None) -> Union[None, List[Any]]:
"""Evaluates for all tasks till the current one.
Args:
cur_task_id: Current task id.
model: Flax module for the model.
state: Replicate model state.
eval_ds_list: List of the evaluation datasets.
class_mask_list: List of class masks used for each task.
num_eval_steps: Number of evaluation steps. Default to be -1, meaning use
all batches in the dataset to do evaluation.
task_inc: Specify if doing task incremental, if so, adding corresponding
mask.
return_prompt_id: If return selected prompt ids for each example, used for
plotting the prompt selection histrogram.
original_vit_model: Original vit model definition. Use for calculating cls
token feature used as key in prompt selection.
original_vit_params: Pretrained vit model weights. Use for calculating cls
token feature used as key in prompt selection.
Returns:
List of the replicated metrics, and the list of selected prompt
ids. Note that if return_prompt_id is specified as False, the list of
selected prompt ids will be an empty list.
"""
# logging.info(f"Starting evaluation for task 0 to {cur_task_id}.")
eval_metrics_list = []
prompt_idx_list = []
for task_id in range(cur_task_id + 1):
prompt_idx_cur_task = []
eval_metrics = None
eval_ds = eval_ds_list[task_id]
b_pmap = functools.partial(
jax.pmap, axis_name="batch", static_broadcasted_argnums=0)
eval_func = b_pmap(
functools.partial(
eval_step,
task_id=task_id,
task_inc=task_inc,
class_mask=class_mask_list[task_id],
return_prompt_id=return_prompt_id,
original_vit_model=original_vit_model,
original_vit_params=original_vit_params))
for step, batch in enumerate(eval_ds): # pytype: disable=wrong-arg-types
batch = jax.tree_map(np.asarray, batch)
res = eval_func(model, state, batch)
if return_prompt_id:
metrics_update = flax_utils.unreplicate(res[0])
prompt_idx = res[1]
prompt_idx_cur_task.append(prompt_idx)
else:
metrics_update = flax_utils.unreplicate(res)
eval_metrics = (
metrics_update
if eval_metrics is None else eval_metrics.merge(metrics_update))
del batch
if num_eval_steps > 0 and step + 1 == num_eval_steps:
break
eval_metrics_list.append(eval_metrics)
if return_prompt_id:
prompt_idx_list.append(jnp.concatenate(prompt_idx_cur_task))
if len(eval_ds_list) == 1:
break
return eval_metrics_list, prompt_idx_list
def train_and_evaluate_per_task(task_id: int, config: ml_collections.ConfigDict,
workdir: str, *, model, state,
original_vit_model, original_vit_params,
num_total_class, train_ds_list, eval_ds_list,
class_stats_list, class_mask_list, acc_matrix,
writer, replay_buffer, rng):
"""Runs a training and evaluation loop for a single task.
Args:
task_id: The id of the current task we are training on.
config: Configuration to use.
workdir: Working directory for checkpoints and TF summaries. If this
contains checkpoint training will be resumed from the latest checkpoint.
model: Input model.
state: State of the input model, unreplicated.
original_vit_model: Original vit model definition. Use for calculating cls
token feature used as key in prompt selection.
original_vit_params: Pretrained vit model weights. Use for calculating cls
token feature used as key in prompt selection.
num_total_class: Total number of classes for all tasks.
train_ds_list: The list of training datasets.
eval_ds_list: The list of evaluation datasets.
class_stats_list: The list of class statistics (number of training and test
examples) for each task.
class_mask_list: The list of class masks.
acc_matrix: Global matrix to save end-of-task accuracies for calculate
forgetting and learning accuracy.
writer: Default metrics writer.
replay_buffer: The replay buffer to use. Default to be None.
rng: Random seed.
Returns:
The unreplicated state and the random seed.
"""
# logging.info(f"Working on task {task_id}.")
review_trick = config.continual.get("review_trick")
global summary_step
# Create new optimizer for each task to clear optimizer status
if task_id > 0 and config.reinit_optimizer:
optimizer = create_optimizer(config, state.optimizer.target)
state = state.replace(optimizer=optimizer)
if config.continual.get("weights_transfer"):
param_dict = state.optimizer.target
transferred_weights = utils.transfer_weights(
config,
param_dict,
task_id,
kernel_only=config.continual.get("kernel_only"))
optimizer = optimizer.replace(target=transferred_weights)
state = state.replace(optimizer=optimizer)
# Transfer previous learned prompt params to the new prompt
if config.prompt_pool and config.prompt_pool_param.shared_prompt_pool:
if task_id > 0:
prev_start = (task_id - 1) * config.prompt_pool_param.top_k
prev_end = task_id * config.prompt_pool_param.top_k
cur_start = prev_end
cur_end = (task_id + 1) * config.prompt_pool_param.top_k
if (prev_end > config.prompt_pool_param.pool_size) or (
cur_end > config.prompt_pool_param.pool_size):
pass
else:
param_dict = state.optimizer.target
prompt_pool_para = param_dict["prompt_pool"]["prompt"]
if config.use_prefix_tune_for_e_prompt:
prompt_pool_para = prompt_pool_para.at[:, :, cur_start:cur_end].set(
prompt_pool_para[:, :, prev_start:prev_end])
else:
prompt_pool_para = prompt_pool_para.at[:, cur_start:cur_end].set(
prompt_pool_para[:, prev_start:prev_end])
param_dict, _ = utils.replace_prompt_pool(param_dict, prompt_pool_para)
state = utils.state_with_new_param(state, param_dict)
# Transfer previous learned prompt param keys to the new prompt
if config.prompt_pool and config.prompt_pool_param.prompt_key and config.prompt_pool_param.shared_prompt_key:
if task_id > 0:
prev_start = (task_id - 1) * config.prompt_pool_param.top_k
prev_end = task_id * config.prompt_pool_param.top_k
cur_start = prev_end
cur_end = (task_id + 1) * config.prompt_pool_param.top_k
param_dict = state.optimizer.target
prompt_key_para = param_dict["prompt_pool"]["key"]
prompt_key_para = prompt_key_para.at[cur_start:cur_end].set(
prompt_key_para[prev_start:prev_end])
param_dict, _ = utils.replace_prompt_key(param_dict, prompt_key_para)
state = utils.state_with_new_param(state, param_dict)
# Build input pipeline.
rng, data_rng = jax.random.split(rng)
data_rng = jax.random.fold_in(data_rng, jax.process_index())
train_ds = train_ds_list[task_id]
train_iter = iter(train_ds) # pytype: disable=wrong-arg-types
# Learning rate schedule.
global_batch_size = config.per_device_batch_size * jax.device_count()
# num_train_steps = config.continual.num_train_steps_per_task
# Hacky operation, currently disable setting the number of training steps.
num_train_steps = -1
# specify number of total train steps
if num_train_steps == -1:
# num_train_steps = train_ds.cardinality().numpy()
# 0 represents # training examples here
num_train_steps = int(
class_stats_list[task_id][0] * config.num_epochs) // global_batch_size
assert num_train_steps > 0
steps_per_epoch = num_train_steps // config.num_epochs
num_train_steps = steps_per_epoch * config.num_epochs
if config.eval_every_steps == -1 or config.get("eval_per_epochs"):
# Show plots in the epoch view (x-axis).
eval_every_steps = steps_per_epoch * config.get("eval_per_epochs", 1)
summary_step_div = steps_per_epoch
else:
eval_every_steps = config.eval_every_steps
summary_step_div = 1
if review_trick:
num_review_steps = config.continual.num_review_steps
num_review_epochs = config.continual.num_review_epochs
if num_review_steps == -1:
num_review_steps = replay_buffer.num_samples_per_task * num_review_epochs // global_batch_size
assert num_review_steps > 0
steps_per_review_epoch = num_review_steps // num_review_epochs
num_review_steps = steps_per_review_epoch * num_review_epochs
# no matter how many epochs we train, we only eval five times,
# so the epoch should be > 5
eval_every_review_steps = steps_per_review_epoch * (num_review_epochs // 5)
summary_review_step_div = eval_every_review_steps
else:
num_review_steps = 0
global_num_steps = (num_review_steps +
num_train_steps) * config.continual.num_tasks
logging.info(
"global_batch_size=%d, num_train_steps=%d, steps_per_epoch=%d, eval_every_steps=%d",
global_batch_size, num_train_steps, steps_per_epoch, eval_every_steps)
# We treat the learning rate in the config as the learning rate for batch size
# 256 but scale it according to our batch size.
base_learning_rate = config.learning_rate * global_batch_size / 256.0
learning_rate_fn = functools.partial(
utils.get_learning_rate,
base_learning_rate=base_learning_rate,
steps_per_epoch=steps_per_epoch,
num_epochs=config.num_epochs,
warmup_epochs=config.warmup_epochs,
schedule=config.learning_rate_schedule,
min_learning_rate=config.get("min_learning_rate", 0.) *
global_batch_size / 256.0)
# Set up checkpointing of the model and the input pipeline.
checkpoint_dir = os.path.join(workdir, f"checkpoints_task{task_id}")
if (not config.save_last_ckpt_only) or (
config.save_last_ckpt_only and
(task_id == (config.continual.num_tasks - 1))):
ckpt = checkpoint.MultihostCheckpoint(checkpoint_dir, max_to_keep=2)
state = ckpt.restore_or_initialize(state)
initial_step = int(state.step) + 1
disable_l2_wd = config.optim == "adamw"
# Distribute training.
state = flax_utils.replicate(state)
p_train_step = jax.pmap(
functools.partial(
train_step,
model=model,
learning_rate_fn=learning_rate_fn,
weight_decay=0 if disable_l2_wd else config.weight_decay,
grad_clip_max_norm=config.get("grad_clip_max_norm"),
initial_step=initial_step,
freeze=bool(config.freeze_part),
freeze_bn_stats=config.freeze_bn_stats,
num_total_class=num_total_class,
train_mask=config.continual.train_mask,
class_mask=class_mask_list[task_id],
cur_task_id=task_id,
use_prompt_mask=config.prompt_pool_param.use_prompt_mask,
original_vit_model=original_vit_model,
original_vit_params=original_vit_params,
config=config),
axis_name="batch")
p_train_step_flag = False
if initial_step == 1:
writer.write_hparams(dict(config))
logging.info("Starting training loop at step %d.", initial_step)
report_progress = periodic_actions.ReportProgress(
num_train_steps=global_num_steps, writer=writer)
train_metrics = None
rng, drop_out_rng = jax.random.split(rng, 2)
drop_out_rng = jax.random.fold_in(drop_out_rng, jax.process_index())
if replay_buffer:
replay_buffer.gen_batch_index(
num_total_samples=class_stats_list[task_id][0],
per_device_bs=config.per_device_batch_size)
num_savable_steps = class_stats_list[task_id][0] // global_batch_size
with metric_writers.ensure_flushes(writer):
for step in range(initial_step,
initial_step + num_train_steps + num_review_steps):
# `step` is a Python integer. `state.step` is JAX integer on the GPU/TPU
# devices.
# this relative step is the step inside each task, used for replay
relative_step = step - initial_step
is_last_step = ((relative_step + 1) == num_train_steps + num_review_steps)
in_train_session = (step < initial_step + num_train_steps)
in_review_session = (step >= initial_step + num_train_steps)
if in_review_session and (not p_train_step_flag):
# do not use mask in the review_session!
p_train_step = jax.pmap(
functools.partial(
train_step,
model=model,
learning_rate_fn=learning_rate_fn,
weight_decay=0 if disable_l2_wd else config.weight_decay,
grad_clip_max_norm=config.get("grad_clip_max_norm"),
initial_step=initial_step,
freeze=bool(config.freeze_part),
freeze_bn_stats=config.freeze_bn_stats,
num_total_class=num_total_class,
train_mask=False,
class_mask=None,
config=config),
axis_name="batch")
p_train_step_flag = True
if config.get("no_train") and in_train_session:
# we just update the replay buffer, but do not train
if replay_buffer and (relative_step < num_savable_steps):
batch = jax.tree_map(np.asarray, next(train_iter))
# add this line to distinguish from logits reply
# if not config.continual.replay.logits_replay:
replay_buffer.add_example(task_id, relative_step, batch)
else:
if config.get("review_last_only") and in_review_session and task_id < (
config.continual.num_tasks - 1):
pass
else:
if in_train_session:
batch = jax.tree_map(np.asarray, next(train_iter))
# replay starts
# if replay, we should save it into the buffer
if replay_buffer and (relative_step < num_savable_steps):
replay_buffer.add_example(task_id, relative_step, batch)
# if in 2nd or later task, we also sample from the buffer
if replay_buffer and (task_id > 0) and (not review_trick):
replay_batch = replay_buffer.get_random_batch(
config.per_device_batch_size,
config.continual.replay.include_new_task)
# concatenate them through the batch_size axis
image_concat = np.concatenate(
[batch["image"], replay_batch["image"]], axis=1)
label_concat = np.concatenate(
[batch["label"], replay_batch["label"]], axis=1)
label_concat = label_concat.astype(np.int32)
batch = {"image": image_concat, "label": label_concat}
else:
batch = replay_buffer.get_random_batch(config.per_device_batch_size,
True)
drop_out_rng_step = jax.random.fold_in(drop_out_rng, step)
drop_out_rng_step_all = jax.random.split(drop_out_rng_step,
jax.local_device_count())
if config.get("weight_norm"):
state = flax_utils.unreplicate(state)
param_dict = state.optimizer.target
param_dict = utils.weight_norm(param_dict)
optimizer = state.optimizer.replace(target=param_dict)
state = state.replace(optimizer=optimizer)
state = flax_utils.replicate(state)
state, metrics_update = p_train_step(
state=state, batch=batch, rng=drop_out_rng_step_all)
metric_update = flax_utils.unreplicate(metrics_update)
train_metrics = (
metric_update
if train_metrics is None else train_metrics.merge(metric_update))
# Quick indication that training is happening.
logging.log_first_n(logging.INFO, "Finished training step %d.", 5,
step)
# align logging parameters in review session:
if (in_train_session and
(step % eval_every_steps == 0)) or (in_review_session and (
(step - initial_step - num_train_steps + 1) %
eval_every_review_steps == 0)):
summary_step += 1
write_flag = True
else:
write_flag = False
if (relative_step % summary_step_div == 0) or is_last_step:
train_summary_step = relative_step // summary_step_div + task_id * config.num_epochs
writer.write_scalars(train_summary_step, train_metrics.compute())
writer.write_scalars(train_summary_step, {"task_id": task_id})
train_metrics = None
# add this setting for gaussian schedule
if config.get("gaussian_schedule"):
eval_interval = 10
write_flag = False
else:
eval_interval = 1
if config.eval_last_only:
eval_interval = config.continual.num_tasks
if (write_flag or is_last_step) and ((task_id + 1) % eval_interval
== 0):
with report_progress.timed("eval"):
eval_metrics_list, prompt_idx_list = evaluate_tasks_till_now(
task_id,
model,
state,
eval_ds_list,
class_mask_list,
config.num_eval_steps,
config.continual.eval_task_inc,
config.get("prompt_histogram"),
original_vit_model=original_vit_model,
original_vit_params=original_vit_params)
for i, prompt_idx in enumerate(prompt_idx_list):
writer.write_histograms(
summary_step, {f"histogram_{i}": prompt_idx},
{f"histogram_{i}": config.prompt_pool_param.pool_size})
avg_acc, count = 0, 0
for i, eval_metrics in enumerate(eval_metrics_list):
res_to_write = eval_metrics.compute()
writer.write_scalars(summary_step, res_to_write)
count += 1
avg_acc += res_to_write[f"accuracy_{i}"]
writer.write_scalars(summary_step, {"avg_acc": avg_acc / count})
if is_last_step and ((task_id + 1) % eval_interval == 0):
for i, eval_metrics in enumerate(eval_metrics_list):
res_to_write = eval_metrics.compute()
# row -> task_id; col -> current task
acc_matrix[i, task_id] = res_to_write[f"accuracy_{i}"]
diagonal = np.diag(acc_matrix)
if task_id > 0:
forgetting = np.mean((np.max(acc_matrix, axis=1) -
acc_matrix[:, task_id])[:task_id])
backward = np.mean((acc_matrix[:, task_id] - diagonal)[:task_id])
writer.write_scalars(summary_step, {
"forgetting": forgetting,
"backward": backward
})
learning_acc = np.mean(diagonal[:(task_id + 1)])
writer.write_scalars(summary_step, {"learning_acc": learning_acc})
if (not config.save_last_ckpt_only) or (
config.save_last_ckpt_only and
(task_id == (config.continual.num_tasks - 1))):
if (step % config.checkpoint_every_steps) == 0 or is_last_step and (
(task_id + 1) % eval_interval == 0):
with report_progress.timed("checkpoint"):
ckpt.save(flax_utils.unreplicate(state))
state = flax_utils.unreplicate(state)
logging.info("Finishing training at step %d", int(state.step))
return state, rng
def get_train_eval_components(config: ml_collections.ConfigDict,
rng: jax.random.PRNGKey):
"""Helper function for generating train and evaluation datasets."""
if config.dataset == "5datasets":
rng, train_ds_list, eval_ds_list, class_stats_list, class_mask_list = input_pipeline.create_5datasets(
config, rng)
train_ds = train_ds_list[0]
elif config.dataset == "core50":
rng, train_ds_list, eval_ds_list, class_stats_list, class_mask_list = input_pipeline.create_core50(
config, rng)
train_ds = train_ds_list[0]
elif config.dataset == "imagenet_r":
if config.get("imr_eval"):
rng, train_ds_list, eval_ds_list, class_stats_list, class_mask_list = input_pipeline.create_split_imagenet_r_eval(
config, rng)
else:
rng, train_ds_list, eval_ds_list, class_stats_list, class_mask_list = input_pipeline.create_split_imagenet_r(
config, rng)
train_ds = train_ds_list[0]
elif config.dataset == "cifar100" and config.get("gaussian_schedule"):
create_gaussian_cifar100 = input_pipeline.create_gaussian_cifar100
rng, train_ds_list, eval_ds_list, class_stats_list, class_mask_list = create_gaussian_cifar100(
config, rng)
train_ds = train_ds_list[0]
else:
rng, data_rng = jax.random.split(rng)
data_rng = jax.random.fold_in(data_rng, jax.process_index())
_, train_ds, _ = input_pipeline.create_datasets(config, data_rng)
# Build input pipeline, for creating tasks of datasets
task_range = config.continual.num_tasks
train_ds_list, eval_ds_list, class_stats_list, class_mask_list = [], [], [], []
for task_id in range(task_range):
rng, data_rng = jax.random.split(rng)
data_rng = jax.random.fold_in(data_rng, jax.process_index())
_, train_ds_sub, eval_ds_sub, class_stats, class_mask = input_pipeline.create_continual_datasets(
config, data_rng, task_id)
train_ds_list.append(train_ds_sub)
eval_ds_list.append(eval_ds_sub)
class_stats_list.append(class_stats)
class_mask_list.append(class_mask)
if ("5datasets" in config.dataset) or ("core50" in config.dataset):
num_total_class = 50
elif "imagenet_r" in config.dataset:
num_total_class = 200
else:
num_total_class = 100 # ds_info.features["label"].num_classes
return rng, train_ds_list, eval_ds_list, class_stats_list, class_mask_list, train_ds, num_total_class
def train_and_evaluate(config: ml_collections.ConfigDict, workdir: str):
"""Runs a training and evaluation loop for sequentially arriving tasks.
Args:
config: Configuration to use.
workdir: Working directory for checkpoints and TF summaries. If this
contains checkpoint training will be resumed from the latest checkpoint.
"""
# create parent workdir
if not tf.io.gfile.exists(workdir):
tf.io.gfile.makedirs(workdir)
# generate random seed
rng = jax.random.PRNGKey(config.seed)
rng, train_ds_list, eval_ds_list, class_stats_list, class_mask_list, train_ds, num_total_class = get_train_eval_components(
config, rng)
rng, model_rng = jax.random.split(rng)
model, state = create_train_state(
config,
model_rng,
input_shape=train_ds.element_spec["image"].shape[1:],
num_classes=num_total_class)
if config.get("init_checkpoint"):
state = utils.load_and_custom_init_checkpoint(
config=config, init_state=state)
# create default writer
writer = metric_writers.create_default_writer(
workdir, just_logging=jax.process_index() > 0)
# create matrix to save end-of-task accuracies for calculate F and LA
acc_matrix = np.zeros(
(config.continual.num_tasks, config.continual.num_tasks))
# if doing replay strategy or not
if config.continual.get("replay"):
# initialize replay buffer
replay_buffer = ReplayBuffer(
continual_config=config.continual,
input_shape=train_ds.element_spec["image"].shape[2:])
else:
replay_buffer = None
# Load original ViT for feature extraction
original_vit_model = None
original_vit_params = None
if config.get("prompt_pool_param"):
if config.prompt_pool_param.embedding_key == "cls":
original_model_cls, original_model_config = vit.create_original_vit(
config.model_name)
original_vit_model = functools.partial(
original_model_cls, num_classes=num_total_class)
rng, model_rng = jax.random.split(rng)
original_vit_init_param = original_vit_model(train=False).init(
model_rng, jnp.ones(train_ds.element_spec["image"].shape[1:]))
original_vit_params = utils_vit.load_pretrained(
pretrained_path=config.init_checkpoint,
init_params=original_vit_init_param["params"],
model_config=original_model_config)
task_range = config.continual.num_tasks
for task_id in range(task_range):
kwargs = {
"model": model,
"state": state,
"original_vit_model": original_vit_model,
"original_vit_params": original_vit_params,
"num_total_class": num_total_class,
"train_ds_list": train_ds_list,
"eval_ds_list": eval_ds_list,
"class_stats_list": class_stats_list,
"class_mask_list": class_mask_list,
"acc_matrix": acc_matrix,
"writer": writer,
"replay_buffer": replay_buffer,