-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecog_python3.py
97 lines (74 loc) · 2.28 KB
/
recog_python3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import numpy as np
import cv2
import os
########## KNN CODE ############
def distance(v1, v2):
# Eucledian
return np.sqrt(((v1-v2)**2).sum())
def knn(train, test, k=5):
dist = []
for i in range(train.shape[0]):
# Get the vector and label
ix = train[i, :-1]
iy = train[i, -1]
# Compute the distance from test point
d = distance(test, ix)
dist.append([d, iy])
# Sort based on distance and get top k
dk = sorted(dist, key=lambda x: x[0])[:k]
# Retrieve only the labels
labels = np.array(dk)[:, -1]
# Get frequencies of each label
output = np.unique(labels, return_counts=True)
# Find max frequency and corresponding label
index = np.argmax(output[1])
return output[0][index]
################################
# Initialize camera
cap = cv2.VideoCapture(0)
# Load the haar cascade for frontal face
face_cascade = cv2.CascadeClassifier('./haarcascade_frontalface_alt.xml')
dataset_path = './face_dataset/'
face_data = []
labels = []
class_id = 0
names = {}
# Dataset prepration
for fx in os.listdir(dataset_path):
if fx.endswith('.npy'):
names[class_id] = fx[:-4]
data_item = np.load(dataset_path + fx)
face_data.append(data_item)
target = class_id * np.ones((data_item.shape[0],))
class_id += 1
labels.append(target)
face_dataset = np.concatenate(face_data, axis=0)
face_labels = np.concatenate(labels, axis=0).reshape((-1, 1))
print(face_labels.shape)
print(face_dataset.shape)
trainset = np.concatenate((face_dataset, face_labels), axis=1)
print(trainset.shape)
font = cv2.FONT_HERSHEY_SIMPLEX
while True:
ret, frame = cap.read()
if ret == False:
continue
# Convert frame to grayscale
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Detect multi faces in the image
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for face in faces:
x, y, w, h = face
# Get the face ROI
offset = 7
face_section = frame[y-offset:y+h+offset, x-offset:x+w+offset]
face_section = cv2.resize(face_section, (100, 100))
out = knn(trainset, face_section.flatten())
# Draw rectangle in the original image
cv2.putText(frame, names[int(out)],(x,y-10), cv2.FONT_HERSHEY_SIMPLEX, 1,(255,0,0),2,cv2.LINE_AA)
cv2.rectangle(frame, (x,y), (x+w,y+h), (0,255,0), 2)
cv2.imshow("Faces", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()